Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Wu Feiyang"'
Autor:
Xu, Jiale, Zhang, Rui, Guo, Cong, Hu, Weiming, Liu, Zihan, Wu, Feiyang, Feng, Yu, Sun, Shixuan, Shao, Changxu, Guo, Yuhong, Zhao, Junping, Zhang, Ke, Guo, Minyi, Leng, Jingwen
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests. This surge in demand poses significant challenges in optimizing throughput and latency while keeping costs manageable. The Key-Value (KV) cach
Externí odkaz:
http://arxiv.org/abs/2407.15309
Simulation-to-reality (sim-to-real) transfer is a fundamental problem for robot learning. Domain Randomization, which adds randomization during training, is a powerful technique that effectively addresses the sim-to-real gap. However, the noise in ob
Externí odkaz:
http://arxiv.org/abs/2402.06783
Enabling bipedal walking robots to learn how to maneuver over highly uneven, dynamically changing terrains is challenging due to the complexity of robot dynamics and interacted environments. Recent advancements in learning from demonstrations have sh
Externí odkaz:
http://arxiv.org/abs/2309.16074
Autor:
Song, Enxin, Chai, Wenhao, Wang, Guanhong, Zhang, Yucheng, Zhou, Haoyang, Wu, Feiyang, Chi, Haozhe, Guo, Xun, Ye, Tian, Zhang, Yanting, Lu, Yan, Hwang, Jenq-Neng, Wang, Gaoang
Recently, integrating video foundation models and large language models to build a video understanding system can overcome the limitations of specific pre-defined vision tasks. Yet, existing systems can only handle videos with very few frames. For lo
Externí odkaz:
http://arxiv.org/abs/2307.16449
We study the problem of Inverse Reinforcement Learning (IRL) with an average-reward criterion. The goal is to recover an unknown policy and a reward function when the agent only has samples of states and actions from an experienced agent. Previous IR
Externí odkaz:
http://arxiv.org/abs/2305.14608
We study average-reward Markov decision processes (AMDPs) and develop novel first-order methods with strong theoretical guarantees for both policy optimization and policy evaluation. Compared with intensive research efforts in finite sample analysis
Externí odkaz:
http://arxiv.org/abs/2205.05800
Autor:
Nie, Hui, Gao, Zhongyang, Luo, Yanghe, Wang, Yajuan, Wu, Feiyang, Mu, Guangqing, Wu, Xiaomeng
Publikováno v:
In Food Science and Human Wellness May 2024 13(3):1311-1321
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tian, Xiuying, Yin, Xingyang, Wu, Feiyang, Ji, Changyan, Huang, Zhi, Zhu, Ling, Luo, Fei, Liu, Xin, Li, Jing, Peng, Hongxia, Wu, Xuhui, Li, Guowen, Wen, Jin, Lin, Hua-Tay
Publikováno v:
In Ceramics International November 2024
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.