Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Wu, Yongke"'
Autor:
Wu, Yongke, Xie, Xiaoping
In this paper, we consider mixed finite element semi-/full discretizations of the Rosensweig ferrofluid flow model. We first establish some regularity results for the model under several basic assumptions. Then we show that the energy stability of th
Externí odkaz:
http://arxiv.org/abs/2412.00360
Autor:
Wu, Yongke, Xie, Xiaoping
Mixed finite element methods are considered for a ferrofluid flow model with magnetization paralleled to the magnetic field. The ferrofluid model is a coupled system of the Maxwell equations and the incompressible Navier-Stokes equations. By skillful
Externí odkaz:
http://arxiv.org/abs/2208.05118
Autor:
Wu, Yongke, Xie, Xiaoping
In this paper, we develop a class of mixed finite element methods for the ferrofluid flow model proposed by Shliomis [Soviet Physics JETP, 1972]. We show that the energy stability of the weak solutions to the model is preserved exactly for both the s
Externí odkaz:
http://arxiv.org/abs/2206.03129
Autor:
Wu, Yongke, Bai, Yanhong
Energy-preserving numerical methods for solving the Hodge wave equation is developed in this paper. Based on the de Rham complex, the Hodge wave equation can be formulated as a first-order system and mixed finite element methods using finite element
Externí odkaz:
http://arxiv.org/abs/2009.02844
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wu, Yongke, Xie, Xiaoping
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation October 2023 125
Autor:
Li, Songxin, Wu, Yongke
Publikováno v:
In Applied Mathematics and Computation 1 June 2022 422
Autor:
Chen, Long, Wu, Yongke
Convergence analysis of a nested iterative scheme proposed by Bank,Welfert and Yserentant (BWY) ([Numer. Math., 666: 645-666, 1990]) for solving saddle point system is presented. It is shown that this scheme converges under weaker conditions: the con
Externí odkaz:
http://arxiv.org/abs/1710.03409
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chen, Long, Wu, Yongke
Finite element exterior calculus (FEEC) has been developed as a systematical framework for constructing and analyzing stable and accurate numerical method for partial differential equations by employing differential complexes. This paper is devoted t
Externí odkaz:
http://arxiv.org/abs/1611.05097