Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Wu, Shangbo"'
Adversarial transferability enables black-box attacks on unknown victim deep neural networks (DNNs), rendering attacks viable in real-world scenarios. Current transferable attacks create adversarial perturbation over the entire image, resulting in ex
Externí odkaz:
http://arxiv.org/abs/2312.06199
Deep learning techniques have implemented many unconditional image generation (UIG) models, such as GAN, Diffusion model, etc. The extremely realistic images (also known as AI-Generated Content, AIGC for short) produced by these models bring urgent n
Externí odkaz:
http://arxiv.org/abs/2310.09479
Autor:
Dong, Yinpeng, Chen, Peng, Deng, Senyou, L, Lianji, Sun, Yi, Zhao, Hanyu, Li, Jiaxing, Tan, Yunteng, Liu, Xinyu, Dong, Yangyi, Xu, Enhui, Xu, Jincai, Xu, Shu, Fu, Xuelin, Sun, Changfeng, Han, Haoliang, Zhang, Xuchong, Chen, Shen, Sun, Zhimin, Cao, Junyi, Yao, Taiping, Ding, Shouhong, Wu, Yu, Lin, Jian, Wu, Tianpeng, Wang, Ye, Fu, Yu, Feng, Lin, Gao, Kangkang, Liu, Zeyu, Pang, Yuanzhe, Duan, Chengqi, Zhou, Huipeng, Wang, Yajie, Zhao, Yuhang, Wu, Shangbo, Lyu, Haoran, Lin, Zhiyu, Gao, Yifei, Li, Shuang, Wang, Haonan, Sang, Jitao, Ma, Chen, Zheng, Junhao, Li, Yijia, Shen, Chao, Lin, Chenhao, Cui, Zhichao, Liu, Guoshuai, Shi, Huafeng, Hu, Kun, Zhang, Mengxin
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zho
Externí odkaz:
http://arxiv.org/abs/2212.03412
Backdoor attacks threaten Deep Neural Networks (DNNs). Towards stealthiness, researchers propose clean-label backdoor attacks, which require the adversaries not to alter the labels of the poisoned training datasets. Clean-label settings make the atta
Externí odkaz:
http://arxiv.org/abs/2206.04881
Vision transformers (ViTs) have demonstrated impressive performance in various computer vision tasks. However, the adversarial examples generated by ViTs are challenging to transfer to other networks with different structures. Recent attack methods d
Externí odkaz:
http://arxiv.org/abs/2204.12680
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples. Adversarial examples are malicious images with visually imperceptible perturbations. While these carefully crafted perturbations restricted with tight $\Lp$ norm bo
Externí odkaz:
http://arxiv.org/abs/2107.01396
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.