Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Wu, Denny"'
We study the problem of learning multi-index models in high-dimensions using a two-layer neural network trained with the mean-field Langevin algorithm. Under mild distributional assumptions on the data, we characterize the effective dimension $d_{\ma
Externí odkaz:
http://arxiv.org/abs/2408.07254
We study the computational and sample complexity of learning a target function $f_*:\mathbb{R}^d\to\mathbb{R}$ with additive structure, that is, $f_*(x) = \frac{1}{\sqrt{M}}\sum_{m=1}^M f_m(\langle x, v_m\rangle)$, where $f_1,f_2,...,f_M:\mathbb{R}\t
Externí odkaz:
http://arxiv.org/abs/2406.11828
We study the problem of gradient descent learning of a single-index target function $f_*(\boldsymbol{x}) = \textstyle\sigma_*\left(\langle\boldsymbol{x},\boldsymbol{\theta}\rangle\right)$ under isotropic Gaussian data in $\mathbb{R}^d$, where the lin
Externí odkaz:
http://arxiv.org/abs/2406.01581
Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) defined by the nonlinear feature map of a feedforward neural network. However, existing results only establish weak convergence of the empirical eigenvalue distributi
Externí odkaz:
http://arxiv.org/abs/2402.10127
Recent works have demonstrated that the sample complexity of gradient-based learning of single index models, i.e. functions that depend on a 1-dimensional projection of the input data, is governed by their information exponent. However, these results
Externí odkaz:
http://arxiv.org/abs/2309.03843
The mean-field Langevin dynamics (MFLD) is a nonlinear generalization of the Langevin dynamics that incorporates a distribution-dependent drift, and it naturally arises from the optimization of two-layer neural networks via (noisy) gradient descent.
Externí odkaz:
http://arxiv.org/abs/2306.07221
The entropic fictitious play (EFP) is a recently proposed algorithm that minimizes the sum of a convex functional and entropy in the space of measures -- such an objective naturally arises in the optimization of a two-layer neural network in the mean
Externí odkaz:
http://arxiv.org/abs/2303.02957
It is often observed that stochastic gradient descent (SGD) and its variants implicitly select a solution with good generalization performance; such implicit bias is often characterized in terms of the sharpness of the minima. Kleinberg et al. (2018)
Externí odkaz:
http://arxiv.org/abs/2302.09376
We study the first gradient descent step on the first-layer parameters $\boldsymbol{W}$ in a two-layer neural network: $f(\boldsymbol{x}) = \frac{1}{\sqrt{N}}\boldsymbol{a}^\top\sigma(\boldsymbol{W}^\top\boldsymbol{x})$, where $\boldsymbol{W}\in\math
Externí odkaz:
http://arxiv.org/abs/2205.01445
As an example of the nonlinear Fokker-Planck equation, the mean field Langevin dynamics recently attracts attention due to its connection to (noisy) gradient descent on infinitely wide neural networks in the mean field regime, and hence the convergen
Externí odkaz:
http://arxiv.org/abs/2201.10469