Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Wu, Bingyao"'
For a class of (non-symmetric) diffusion processes on a length space, which in particular include the (reflecting) diffusion processes on a connected compact Riemannian manifold, the exact convergence rate is derived for $({\mathbb E} [{\mathbb W}_p^
Externí odkaz:
http://arxiv.org/abs/2408.09116
Autor:
Li, Huaiqian, Wu, Bingyao
We estimate the rate of convergence for the Kantorovich (or Wasserstein) distance between empirical measures of i.i.d. random variables associated with the Laguerre model of order $\alpha$ on $(0,\infty)^N$ and their common law, which is not compactl
Externí odkaz:
http://arxiv.org/abs/2308.10497
Autor:
Li, Huaiqian, Wu, Bingyao
We estimate rates of convergence for empirical measures associated with the subordinated fractional Brownian motion to the uniform distribution on the flat torus under the Wasserstein distance $\mathbb{W}_p$ for all $p\geq1$. In particular, our resul
Externí odkaz:
http://arxiv.org/abs/2305.01228
Autor:
Li, Huaiqian, Wu, Bingyao
We investigate long-time behaviors of empirical measures associated with subordinated Dirichlet diffusion processes on a compact Riemannian manifold $M$ with boundary $\partial M$ to some reference measure, under the quadratic Wasserstein distance. F
Externí odkaz:
http://arxiv.org/abs/2206.03901
Autor:
Li, Huaiqian, Wu, Bingyao
The asymptotic behaviour of empirical measures has plenty of studies. However, the research on conditional empirical measures is limited. Being the development of Wang \cite{eW1}, under the quadratic Wasserstein distance, we investigate the rate of c
Externí odkaz:
http://arxiv.org/abs/2204.13559
Autor:
Li, Huaiqian, Wu, Bingyao
The asymptotic behaviour of empirical measures has been studied extensively. In this paper, we consider empirical measures of given subordinated processes on complete (not necessarily compact) and connected Riemannian manifolds with possibly nonempty
Externí odkaz:
http://arxiv.org/abs/2201.12797
Autor:
Wang, Feng-Yu, Wu, Bingyao
Let $M$ be a connected compact Riemannian manifold possibly with a boundary, let $V\in C^2(M)$ such that $\mu(\d x):=\e^{V(x)}\d x$ is a probability measure, where $\d x$ is the volume measure, and let $L=\Delta+\nabla V$. The exact convergence rate
Externí odkaz:
http://arxiv.org/abs/2107.11568
Autor:
Shang, Zhiguo1 (AUTHOR), Zhu, Zhexin1 (AUTHOR), Wang, Gangqiang1 (AUTHOR) sywgq@zstu.edu.cn, Lu, Wangyang1 (AUTHOR) luwy@zstu.edu.cn, Wu, Bingyao1 (AUTHOR), Li, Qijian1 (AUTHOR)
Publikováno v:
Environmental Technology. Sep2024, Vol. 45 Issue 21, p4230-4242. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Zhao, Jingxuan1 (AUTHOR), Wu, Bingyao1 (AUTHOR), Huang, Xinwei1 (AUTHOR), Sun, Yang1 (AUTHOR), Zhao, Zhibo1,2 (AUTHOR), Ye, Meidan2 (AUTHOR) mdye@xmu.edu.cn, Wen, Xiaoru1 (AUTHOR) xiaoru-wen@imu.edu.cn
Publikováno v:
Advanced Science. 9/5/2022, Vol. 9 Issue 25, p1-12. 12p.