Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Wouter M Kouw"'
Publikováno v:
PLoS ONE, Vol 15, Iss 8, p e0237009 (2020)
In a broad range of fields it may be desirable to reuse a supervised classification algorithm and apply it to a new data set. However, generalization of such an algorithm and thus achieving a similar classification performance is only possible when t
Externí odkaz:
https://doaj.org/article/195e8c17af5c4237bd5689ba45eb6eef
Publikováno v:
Entropy, Vol 23, Iss 12, p 1565 (2021)
Active Inference (AIF) is a framework that can be used both to describe information processing in naturally intelligent systems, such as the human brain, and to design synthetic intelligent systems (agents). In this paper we show that Expected Free E
Externí odkaz:
https://doaj.org/article/2accd9315e9d4561b6b489068d39fa18
Publikováno v:
Entropy, Vol 23, Iss 6, p 683 (2021)
Time-varying autoregressive (TVAR) models are widely used for modeling of non-stationary signals. Unfortunately, online joint adaptation of both states and parameters in these models remains a challenge. In this paper, we represent the TVAR model by
Externí odkaz:
https://doaj.org/article/e46dbd760dbe4d8fafdf60162159939f
Publikováno v:
2022 IEEE 61st Conference on Decision and Control (CDC), 7309-7314
STARTPAGE=7309;ENDPAGE=7314;TITLE=2022 IEEE 61st Conference on Decision and Control (CDC)
STARTPAGE=7309;ENDPAGE=7314;TITLE=2022 IEEE 61st Conference on Decision and Control (CDC)
We present a variational Bayesian identification procedure for polynomial NARMAX models based on message passing on a factor graph. Message passing allows us to obtain full posterior distributions for regression coefficients, precision parameters and
Autor:
Marco Loog, Wouter M. Kouw
Publikováno v:
Kouw, W M & Loog, M 2021, ' A Review of Domain Adaptation without Target Labels ', IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 3, 8861136, pp. 766-785 . https://doi.org/10.1109/TPAMI.2019.2945942
Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approach
Publikováno v:
AAAI
Language evolves over time in many ways relevant to natural language processing tasks. For example, recent occurrences of tokens 'BERT' and 'ELMO' in publications refer to neural network architectures rather than persons. This type of temporal signal
Publikováno v:
Entropy
Entropy; Volume 23; Issue 12; Pages: 1565
Entropy, 23(12):1565. Multidisciplinary Digital Publishing Institute (MDPI)
Entropy, Vol 23, Iss 1565, p 1565 (2021)
Entropy; Volume 23; Issue 12; Pages: 1565
Entropy, 23(12):1565. Multidisciplinary Digital Publishing Institute (MDPI)
Entropy, Vol 23, Iss 1565, p 1565 (2021)
Active Inference (AIF) is a framework that can be used both to describe information processing in naturally intelligent systems, such as the human brain, and to design synthetic intelligent systems (agents). In this paper we show that Expected Free E
Autor:
Marco Loog, Wouter M. Kouw
Publikováno v:
Pattern Recognition Letters, 148, 107-113. Elsevier
Pattern Recognition Letters, 148
Pattern Recognition Letters, 148
Consider a domain-adaptive supervised learning setting, where a classifier learns from labeled data in a source domain and unlabeled data in a target domain to predict the corresponding target labels. If the classifier’s assumption on the relations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c58d06b46a0147dff41b7952654c3198
https://research.tue.nl/nl/publications/481bdc72-4420-4d92-9c8b-041a2dd85192
https://research.tue.nl/nl/publications/481bdc72-4420-4d92-9c8b-041a2dd85192
Publikováno v:
Entropy, Vol 23, Iss 683, p 683 (2021)
Entropy
Volume 23
Issue 6
Entropy, 23(6):683. Multidisciplinary Digital Publishing Institute (MDPI)
Entropy
Volume 23
Issue 6
Entropy, 23(6):683. Multidisciplinary Digital Publishing Institute (MDPI)
Time-varying autoregressive (TVAR) models are widely used for modeling of non-stationary signals. Unfortunately, online joint adaptation of both states and parameters in these models remains a challenge. In this paper, we represent the TVAR model by
Publikováno v:
ISIT
2020 IEEE International Symposium on Information Theory, ISIT 2020-Proceedings, 1337-1342
STARTPAGE=1337;ENDPAGE=1342;TITLE=2020 IEEE International Symposium on Information Theory, ISIT 2020-Proceedings
2020 IEEE International Symposium on Information Theory, ISIT 2020-Proceedings, 1337-1342
STARTPAGE=1337;ENDPAGE=1342;TITLE=2020 IEEE International Symposium on Information Theory, ISIT 2020-Proceedings
Hierarchical autoregressive (AR) models can describe many complex physical processes. Unfortunately, online adaptation in these models under non-stationary conditions remains a challenge. In this paper, we track states and parameters in a hierarchica