Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Woronowicz, Mariusz"'
Publikováno v:
Physics Letters B, 138729 (2024)
We propose the doubly $\kappa$-dependent Yang quantum phase space which describes the generalization of $D = 4$ Yang model. We postulate that such model is covariant under the generalized Born map, what permits to derive this new model from the earli
Externí odkaz:
http://arxiv.org/abs/2311.16994
Autor:
Lukierski, Jerzy, Woronowicz, Mariusz
The relativistic $D=4$ Snyder model is formulated in terms of $D=4$ $dS$ algebra $o(4,1)$ generators, with noncommutative Lorentz-invariant Snyder quantum space-time provided by $\frac{O(4,1)}{O(3,1)}$ coset generators. Analogously, in relativistic $
Externí odkaz:
http://arxiv.org/abs/2204.07787
Autor:
Lukierski, Jerzy, Woronowicz, Mariusz
The relativistic Lorentz-covariant quantum space-times obtained by Snyder can be described by the coset generators of (anti) de-Sitter algebras. Similarly, the Lorentz-covariant quantum phase spaces introduced by Yang, which contain additionally quan
Externí odkaz:
http://arxiv.org/abs/2110.13697
Autor:
Lukierski, Jerzy, Woronowicz, Mariusz
Publikováno v:
Phys. Rev. D 101, 126003 (2020)
We consider two quantum phase spaces which can be described by two Hopf algebroids linked with the well-known $\theta_{\mu \nu }$-deformed $D=4$ Poincare-Hopf algebra $\mathbb{H}$. The first algebroid describes $\theta_{\mu \nu }$-deformed relativist
Externí odkaz:
http://arxiv.org/abs/1902.02313
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the generalized (10+10)-dimensional D=4 quantum phase spaces containing translational and Lorentz spin sectors associated with the dual pair of twist-quantized Poincare Hopf algebra $\mathbb{H}$ and quantum Poincare Hopf group $\widehat{\
Externí odkaz:
http://arxiv.org/abs/1811.07365
Publikováno v:
Phys.Lett. B777 (2018), 1-7
We consider new Abelian twists of Poincare algebra describing non-symmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generatin
Externí odkaz:
http://arxiv.org/abs/1710.09772
The $(4+4)$-dimensional $\kappa$-deformed quantum phase space as well as its $(10+10)$-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the $(10+10)$-dimensional quantum phase space is the double of $D=4$
Externí odkaz:
http://arxiv.org/abs/1601.01590
We consider the general D=4 (10+10)-dimensional kappa-deformed quantum phase space as given by Heisenberg double \mathcal{H} of D=4 kappa-deformed Poincare-Hopf algebra H. The standard (4+4) -dimensional kappa - deformed covariant quantum phase space
Externí odkaz:
http://arxiv.org/abs/1507.02612
Autor:
Lukierski, Jerzy, Woronowicz, Mariusz
We consider the relativistic phase space coordinates (x_{\mu},p_{\mu}) as composite, described by functions of the primary pair of twistor coordinates. It appears that if twistor coordinates are canonicaly quantized the composite space-time coordinat
Externí odkaz:
http://arxiv.org/abs/1311.7498