Zobrazeno 1 - 10
of 268
pro vyhledávání: '"Word problem for groups"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Stillwell, John C.
Publikováno v:
Transactions of the American Mathematical Society, 1983 Apr 01. 276(2), 715-727.
Externí odkaz:
https://www.jstor.org/stable/1999079
Autor:
Haring-Smith, Robert H.
Publikováno v:
Transactions of the American Mathematical Society, 1983 Sep 01. 279(1), 337-356.
Externí odkaz:
https://www.jstor.org/stable/1999388
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 112:803-810
2-Stratifolds are a generalization of 2-manifolds in that there are disjoint simple closed curves where several sheets meet. We show that the word problem for fundamental groups of 2-stratifolds is solvable.
Autor:
Lance L. Ross, Jon M. Corson
Publikováno v:
International Journal of Foundations of Computer Science. 26:79-98
An M-automaton is a finite automaton with a blind counter that mimics a monoid M. The finitely generated groups whose word problems (when viewed as formal languages) are accepted by M-automata play a central role in understanding the family 𝔏(M) o
Autor:
William Cocke, Meng-Che Ho
Word maps in a group, an analogue of polynomials in groups, are defined by substitution of formal words. Lubotzky gave a characterization of the images of word maps in finite simple groups, and a consequence of his characterization is the existence o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80a650e7014cd8220fc0f1fc28bb8a46
http://arxiv.org/abs/1701.05947
http://arxiv.org/abs/1701.05947
Publikováno v:
Theoretical Computer Science
Theoretical Computer Science, 2017, 661, pp.35-55. ⟨10.1016/j.tcs.2016.11.033⟩
Theoretical Computer Science, Elsevier, 2017, 661, pp.35-55. ⟨10.1016/j.tcs.2016.11.033⟩
Theoretical Computer Science, 2017, 661, pp.35-55. ⟨10.1016/j.tcs.2016.11.033⟩
Theoretical Computer Science, Elsevier, 2017, 661, pp.35-55. ⟨10.1016/j.tcs.2016.11.033⟩
We generalize the classical definition of effectively closed subshift to finitely generated groups. We study classical stability properties of this class and then extend this notion by allowing the usage of an oracle to the word problem of a group. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2507603294224a1b782e9dec648ba7b1
https://hal.science/hal-01970761/document
https://hal.science/hal-01970761/document
Autor:
Huishan Wu, Guohua Wu
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319559100
TAMC
TAMC
Bergstra and Tucker [1, 2] proved that computable universal algebras have finitely presented expansions. Bergstra and Tucker, and Goncharov, independently, asked whether all finitely generated computably enumerable algebras have finitely presented ex
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3ae78ff3cae44984279a716e351602cf
https://doi.org/10.1007/978-3-319-55911-7_46
https://doi.org/10.1007/978-3-319-55911-7_46
We give a criterion for fibre products to be finitely presented and use it as the basis of a construction that encodes the pathologies of finite group presentations into pairs of groups \( P \subset G \) where G is a product of hyperbolic groups and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18d22bf2c52d5a121a06fdba3b59883d
https://doi.org/10.1007/s000140050136
https://doi.org/10.1007/s000140050136
Publikováno v:
Acta Mathematica Sinica, English Series. 29:571-590
Let X* be a free monoid over an alphabet X and W be a finite language over X. Let S(W) be the Rees quotient X*/I(W), where I(W) is the ideal of X* consisting of all elements of X* that are not subwords of W. Then S(W) is a finite monoid with zero and