Zobrazeno 1 - 10
of 66
pro vyhledávání: '"Wolfgang Ziller"'
Autor:
Wolfgang Ziller, Luis A. Florit
Publikováno v:
Journal of the London Mathematical Society. 104:1475-1490
We classify $n$-dimensional geometric graph manifolds with nonnegative scalar curvature, and first show that if $n>3$, the universal cover splits off a codimension 3 Euclidean factor. We then proceed with the classification of the 3-dimensional case
Autor:
Luis A. Florit, Wolfgang Ziller
Publikováno v:
Annales scientifiques de l'École normale supérieure. 53:1313-1333
Publikováno v:
J. Differential Geom. 117, no. 1 (2021), 1-22
Journal of Differential Geometry
Journal of Differential Geometry, In press, 117 (1), pp.1-22. ⟨10.4310/jdg/1609902015⟩
Journal of Differential Geometry, International Press, In press, 117 (1), pp.1-22. ⟨10.4310/jdg/1609902015⟩
Journal of Differential Geometry, International Press, In press
Journal of Differential Geometry
Journal of Differential Geometry, In press, 117 (1), pp.1-22. ⟨10.4310/jdg/1609902015⟩
Journal of Differential Geometry, International Press, In press, 117 (1), pp.1-22. ⟨10.4310/jdg/1609902015⟩
Journal of Differential Geometry, International Press, In press
International audience; We study non-reversible Finsler metrics with constant flag curvature 1 on S 2 and show that the geodesic flow of every such metric is conjugate to that of one of Katok's examples, which form a 1-parameter family. In particular
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3c3cba72e2e57542e32849b936c8c39
https://projecteuclid.org/euclid.jdg/1609902015
https://projecteuclid.org/euclid.jdg/1609902015
Autor:
Luigi Verdiani, Wolfgang Ziller
We classify complete curvature homogeneous metrics on simply connected four dimensional manifolds which are invariant under a cohomogeneity one action. We show that they are either isometric to a symmetric space with one of its cohomogeneity one acti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10274ccfa74d0dc875dcda4cd3d47f75
http://arxiv.org/abs/2006.11294
http://arxiv.org/abs/2006.11294
Autor:
Luigi Verdiani, Wolfgang Ziller
We present an efficient method for determining the conditions that a metric on a cohomogeneity one manifold, defined in terms of functions on the regular part, needs to satisfy in order to extend smoothly to the singular orbit.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e6a7828e630a3e6b52c43a553fae5829
http://hdl.handle.net/2158/1213410
http://hdl.handle.net/2158/1213410
Autor:
Luigi Verdiani, Wolfgang Ziller
Publikováno v:
Mathematische Annalen. 371:655-662
We show that a certain family of cohomogeneity one manifolds does not admit an invariant metric of nonnegative sectional curvature, unless it admits one with positive curvature. As a consequence, the classification of nonnegatively curved cohomogenei
Publikováno v:
Differential Geometry and its Applications. 78:101794
We study the problem of prescribing the Ricci curvature in the class of naturally reductive metrics on a compact Lie group. We derive necessary as well as sufficient conditions for the solvability of the equations and provide a series of examples.
We study the Ricci iteration for homogeneous metrics on spheres and complex projective spaces. Such metrics can be described in terms of modifying the canonical metric on the fibers of a Hopf fibration. When the fibers of the Hopf fibration are circl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::346e588d1ddc9598b65faa4d6ea6b532
http://arxiv.org/abs/1811.01724
http://arxiv.org/abs/1811.01724
Autor:
Ming Xu, Wolfgang Ziller
Publikováno v:
Forum Mathematicum. 29:1213-1226
In this work, we continue with the classification for positively curve homogeneous Finsler spaces ( G / H , F ) {(G/H,F)} . With the assumption that the homogeneous space G / H {G/H} is odd dimensional and the positively curved metric F is reversible
Publikováno v:
Geometric and Functional Analysis. 21:499-524
We construct a metric with positive sectional curvature on a 7-manifold which supports an isometry group with orbits of codimension 1. It is a connection metric on the total space of an orbifold 3-sphere bundle over an orbifold 4-sphere. By a result