Zobrazeno 1 - 10
of 337
pro vyhledávání: '"Wolfgang Woess"'
Autor:
Anna Muranova, Wolfgang Woess
Publikováno v:
Mathematics, Vol 10, Iss 5, p 820 (2022)
We introduce a Green function and analogues of other related kernels for finite and infinite networks whose edge weights are complex-valued admittances with positive real part. We provide comparison results with the same kernels associated with corre
Externí odkaz:
https://doaj.org/article/40faff91c39e49f99bcb902d970c72e6
Autor:
Ecaterina Sava-Huss, Wolfgang Woess
Publikováno v:
Annali di Matematica Pura ed Applicata (1923-)
This paper studies the boundary behaviour of $$\lambda $$ λ -polyharmonic functions for the simple random walk operator on a regular tree, where $$\lambda $$ λ is complex and $$|\lambda |> \rho $$ | λ | > ρ , the $$\ell ^2$$ ℓ 2 -spectral radiu
Autor:
Thomas Hirschler, Wolfgang Woess
The networks of this -- primarily (but not exclusively) expository -- compendium are strongly connected, finite directed graphs $X$, where each oriented edge $(x,y)$ is equipped with a positive weight (conductance) $a(x,y)$. We are not assuming symme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2765a9604216e38f713e6dbfc1a00530
We consider a countable tree $T$, possibly having vertices with infinite degree, and an arbitrary stochastic nearest neighbour transition operator $P$. We provide a boundary integral representation for general eigenfunctions of $P$ with eigenvalue $l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57180124d65577747d30d4353baf0c11
http://hdl.handle.net/2108/256454
http://hdl.handle.net/2108/256454
Autor:
Wolfgang Woess, Thomas Hirschler
Publikováno v:
Frontiers in Analysis and Probability ISBN: 9783030564087
On a finite graph with a chosen partition of the vertex set into interior and boundary vertices, a λ-polyharmonic function is a complex function f on the vertex set which satisfies (λ ⋅ I − P)nf(x) = 0 at each interior vertex. Here, P may be th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::959f211b67404f4e7a015033fcb55abd
https://doi.org/10.1007/978-3-030-56409-4_4
https://doi.org/10.1007/978-3-030-56409-4_4
Autor:
Thomas Hirschler, Wolfgang Woess
Publikováno v:
IEEE Transactions on Information Theory. 64:5570-5580
We consider denumerable stochastic processes with (or without) memory. Their evolution is encoded by a finite or infinite rooted tree. The main goal is to compare the entropy rates of a given base process and a second one, to be considered as a pertu
Autor:
Ecaterina, Sava-Huss, Wolfgang, Woess
Publikováno v:
Annali Di Matematica Pura Ed Applicata
This paper studies the boundary behaviour of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{
Autor:
Wolfgang Woess, Christian Lindorfer
Let $X=(V\!X,E\!X)$ be an infinite, locally finite, connected graph without loops or multiple edges. We consider the edges to be oriented, and $E\!X$ is equipped with an involution which inverts the orientation. Each oriented edge is labelled by an e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24eb6d9e2a598ce201d180871a5dddc0
Autor:
Wolfgang Woess, Massimo A. Picardello
On a countable tree $T$, allowing vertices with infinite degree, we consider an arbitrary stochastic irreducible nearest neighbour transition operator $P$. We provide a boundary integral representation for general eigenfunctions of $P$ with eigenvalu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56f2e4482cedf8c20d38262035cbfc0d
http://hdl.handle.net/2108/214847
http://hdl.handle.net/2108/214847
Publikováno v:
Revista Matemática Iberoamericana. 31:935-976
Treebolic space is an analog of the Sol geometry, namely, it is the horocylic product of the hyperbolic upper half plane H and the homogeneous tree T with degree p+1 > 2, the latter seen as a one-complex. Let h be the Busemann function of T with resp