Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Wolfgang Staubach"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal
Externí odkaz:
https://doaj.org/article/68518b88d4bb47e091670d648ac01b9f
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
We establish the global regularity of multilinear Fourier integral operators that are associated to nonlinear wave equations on products of $L^p$ spaces by proving endpoint boundedness on suitable product spaces containing combinations of the local H
Externí odkaz:
https://doaj.org/article/bcee26b3de2644c99efce51e934e478b
Autor:
Aksel Bergfeldt, Wolfgang Staubach
Publikováno v:
Analysis and Applications. 21:385-427
We prove the global regularity of multilinear Schrödinger integral operators with non-degenerate phase function that are associated to nonlinear Schrödinger equations, with Banach domain and target spaces.
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica. 45:1111-1134
Let $R$ be a compact surface and let $\Gamma$ be a Jordan curve which separates $R$ into two connected components $\Sigma_1$ and $\Sigma_2$. A harmonic function $h_1$ on $\Sigma_1$ of bounded Dirichlet norm has boundary values $H$ in a certain confor
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 23:32-51
We consider Riemann surfaces Σ \Sigma with n n borders homeomorphic to S 1 \mathbb {S}^1 and no handles. Using generalized Grunsky operators, we define a period mapping from the infinite-dimensional Teichmüller space of surfaces of this type into t
We prove the global $$L^p$$ L p -boundedness of Fourier integral operators that model the parametrices for hyperbolic partial differential equations, with amplitudes in classical Hörmander classes $$S^{m}_{\rho , \delta }(\mathbb {R}^n)$$ S ρ , δ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5951a01e9f676d8ac971da8061f0bbc1
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456307
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-456307
Publikováno v:
Transactions of the American Mathematical Society. 370:265-319
We establish the L 2 L^2 -solvability of Dirichlet, Neumann and regularity problems for divergence-form heat (or diffusion) equations with time-independent Hölder-continuous diffusion coefficients on bounded Lipschitz domains in R n \mathbb {R}^n .
Publikováno v:
Journal d'Analyse Mathématique. 132:229-245
Let Σ be a Riemann surface of genus g bordered by n curves homeomorphic to the circle S1. Consider quasiconformal maps f: Σ→Σ1 such that the restriction to each boundary curve is a Weil-Petersson class quasisymmetry. We show that any such f is h
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Journal of Mathematical Analysis and Applications. 448:864-884
A complex harmonic function of finite Dirichlet energy on a Jordan domain has boundary values in a certain conformally invariant sense, by a construction of H. Osborn. We call the set of such boundary values the Douglas–Osborn space. One may then a
Autor:
Eric Schippers, Wolfgang Staubach
Publikováno v:
Annales Academiae Scientiarum Fennicae Mathematica. 42:141-147
We prove the well-posedness of a Riemann-Hilbert problem on d-regular qua-sidisks, with boundary data in a class of Besov spaces.