Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Wolfgang J. Kern"'
Autor:
Wolfgang J. Kern, Simon Orlob, Birgitt Alpers, Michael Schörghuber, Andreas Bohn, Martin Holler, Jan-Thorsten Gräsner, Jan Wnent
Publikováno v:
Data in Brief, Vol 41, Iss , Pp 107973- (2022)
This publication presents in detail five exemplary cases and the algorithm used in the article (Orlob et al. 2022). Defibrillator records for the five exemplary cases were obtained from the German Resuscitation Registry. They consist of accelerometry
Externí odkaz:
https://doaj.org/article/b652774c27eb44f583f91c94c3138e45
Publikováno v:
Symmetry, Vol 15, Iss 2, p 414 (2023)
The analytic structure of elementary correlation functions of a quantum field is relevant for the calculation of masses of bound states and their time-like properties in general. In quantum chromodynamics, the calculation of correlation functions for
Externí odkaz:
https://doaj.org/article/913610946edf4eaba4b2c9815f94e493
Autor:
Simon Orlob, Wolfgang J. Kern, Birgitt Alpers, Michael Schörghuber, Andreas Bohn, Martin Holler, Jan-Thorsten Gräsner, Jan Wnent
Publikováno v:
Resuscitation. 172:162-169
To introduce and evaluate a new, open-source algorithm to detect chest compression periods automatically by the rhythmic, high amplitude signals from an accelerometer, without processing single chest compression events, and to consecutively calculate
Publikováno v:
Physical Review
We explore the analytic structure of three-point functions using contour deformations. This method allows continuing calculations analytically from the spacelike to the timelike regime. We first elucidate the case of two-point functions with explicit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72cee1ca0aecdd68ada929a0ad9a6f6c
http://arxiv.org/abs/2212.02515
http://arxiv.org/abs/2212.02515
Autor:
Wolfgang J. Kern, Simon Orlob, Andreas Bohn, Wolfgang Toller, Jan Wnent, Jan-Thorsten Graesner, Martin Holler
Objective: Exploit accelerometry data for an automatic, reliable, and prompt detection of spontaneous circulation during cardiac arrest, as this is both vital for patient survival and practically challenging. Methods: We developed a machine learning
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::779a411a1992decea4ad0d6012f55ae6
http://arxiv.org/abs/2205.06540
http://arxiv.org/abs/2205.06540
Autor:
Wolfgang J. Kern, Simon Orlob, Andreas Bohn, Wolfgang Toller, Jan-Thorsten Gräsner, Jan Wnent, Martin Holler
Publikováno v:
Resuscitation. 175:S5