Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Wolfgang Alexander Moens"'
The abstract is available here: https://uscholar.univie.ac.at/o:1632683
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7df2949c0fae455a6ba56143e555314
https://hdl.handle.net/11353/10.1632683
https://hdl.handle.net/11353/10.1632683
Publikováno v:
Advances in Applied Mathematics. 137:102330
Commutative post-Lie algebra structures on Lie algebras, in short CPA structures, have been studied over fields of characteristic zero, in particular for real and complex numbers motivated by geometry. A perfect Lie algebra in characteristic zero onl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::44ea767ca8f1dbb994259a79c4f695a9
http://arxiv.org/abs/2001.04822
http://arxiv.org/abs/2001.04822
Publikováno v:
International Journal of Algebra and Computation. 28:915-933
We study post-Lie algebra structures on $(\mathfrak{g},\mathfrak{n})$ for nilpotent Lie algebras. First we show that if $\mathfrak{g}$ is nilpotent such that $H^0(\mathfrak{g},\mathfrak{n})=0$, then also $\mathfrak{n}$ must be nilpotent, of bounded c
We show that for a given nilpotent Lie algebra g with Z ( g ) ⊆ [ g , g ] all commutative post-Lie algebra structures, or CPA-structures, on g are complete. This means that all left and all right multiplication operators in the algebra are nilpoten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08af4d681e80f1c654f8ead1002b9b96
https://lirias.kuleuven.be/handle/123456789/654107
https://lirias.kuleuven.be/handle/123456789/654107
Publikováno v:
Journal of Algebra. 467:183-201
We show that any CPA-structure (commutative post-Lie algebra structure) on a perfect Lie algebra is trivial. Furthermore we give a general decomposition of inner CPA-structures, and classify all CPA-structures on complete Lie algebras. As a special c
Autor:
Wolfgang Alexander Moens
We study group-graded Lie algebras L with finite support X. We show that L is nilpotent of |X|-bounded class if X is arithmetically-free. Conversely: we show that Y supports the grading of a non-nilpotent Lie algebra if Y is not arithmetically-free.<
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e1e5315795f17a882a4c5fb8558e679
Publikováno v:
Journal of Algebra. 357:208-221
We consider finite-dimensional complex Lie algebras admitting a periodic derivation, i.e., a nonsingular derivation which has finite multiplicative order. We show that such Lie algebras are at most two-step nilpotent and give several characterization
We describe a new method to determine faithful representations of small dimension for a finite-dimensional nilpotent Lie algebra. We give various applications of this method. In particular we find a new upper bound on the minimal dimension of a faith
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f57c036e58baebfe9a6e00b7a3d1785
http://arxiv.org/abs/1006.2062
http://arxiv.org/abs/1006.2062
We prove an explicit formula for the invariant \(\mu({\mathfrak{g}})\) for finite-dimensional semisimple, and reductive Lie algebras \({\mathfrak{g}}\) over \({\mathbb{C}}\) . Here \(\mu({\mathfrak{g}})\) is the minimal dimension of a faithful linear
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65ec647a96d191169a79c59b1032c4ac
http://arxiv.org/abs/math/0703657
http://arxiv.org/abs/math/0703657