Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Wolff, Pawel"'
Autor:
Szarek, Stanislaw, Wolff, Pawel
The celebrated Dvoretzky theorem asserts that every $N$-dimensional convex body admits central sections of dimension $d = \Omega(\log N)$, which is nearly spherical. For many instances of convex bodies, typically unit balls with respect to some norm,
Externí odkaz:
http://arxiv.org/abs/2410.15118
Autor:
Barthe, Franck, Wolff, Pawel
We study lower bounds on multilinear operators with Gaussian kernels acting on Lebesgue spaces, with exponents below one. We put forward natural conditions when the optimal constant can be computed by inspecting centered Gaussian functions only, and
Externí odkaz:
http://arxiv.org/abs/1805.02455
We study a class of logarithmic Sobolev inequalities with a general form of the energy functional. The class generalizes various examples of modified logarithmic Sobolev inequalities considered previously in the literature. Refining a method of Aida
Externí odkaz:
http://arxiv.org/abs/1509.07565
Publikováno v:
Random Structures & Algorithms Volume 48, Issue 3, pages 454-479, May 2016
An exchangeable random matrix is a random matrix with distribution invariant under any permutation of the entries. For such random matrices, we show, as the dimension tends to infinity, that the empirical spectral distribution tends to the uniform la
Externí odkaz:
http://arxiv.org/abs/1402.3660
Autor:
Adamczak, Radosław, Wolff, Paweł
Building on the inequalities for homogeneous tetrahedral polynomials in independent Gaussian variables due to R. Lata{\l}a we provide a concentration inequality for non-necessarily Lipschitz functions $f\colon \R^n \to \R$ with bounded derivatives of
Externí odkaz:
http://arxiv.org/abs/1304.1826
Autor:
Wolff, Paweł
A refinement of so-called fast Johnson-Lindenstrauss transform, due to Ailon and Chazelle (2006), and Matou\v{s}ek (2008), is proposed. While it preserves the time efficiency and simplicity of implementation of the original construction, it reduces r
Externí odkaz:
http://arxiv.org/abs/1202.5500
The isotropy constant of any $d$-dimensional polytope with $n$ vertices is bounded by $C \sqrt{n/d}$ where $C>0$ is a numerical constant.
Externí odkaz:
http://arxiv.org/abs/0904.2632
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lebourgeois, Thibaut, Sauvage, Bastien, Wolff, Pawel, Josse, Béatrice, Marécal, Virginie, Bennouna, Yasmine, Blot, Romain, Boulanger, Damien, Clark, Hannah, Cousin, Jean-Marc, Nedelec, Philippe, Thouret, Valérie
Publikováno v:
EGUsphere; 1/15/2024, p1-39, 39p
Autor:
Barthe, Franck, Wolff, Paweł
Publikováno v:
In Comptes rendus - Mathématique December 2014 352(12):1017-1021