Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Wold, Erlend Forn��ss"'
Autor:
Deng, Fusheng, Wold, Erlend Forn��ss
Publikováno v:
Arkiv för Matematik. 60:23-41
For a complex Lie group $G$ with a real form $G_0\subset G$, we prove that any Hamiltionian automorphism $\phi$ of a coadjoint orbit $\mathcal O_0$ of $G_0$ whose connected components are simply connected, may be approximated by holomorphic $\mathcal
We study bounded domains with certain smoothness conditions and the properties of their squeezing functions in order to prove that the domains are biholomorphic to the ball.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e8075a53afad97c4cd1d107f6098a48f
http://arxiv.org/abs/1604.05057
http://arxiv.org/abs/1604.05057
Let $��\subset \mathbb{C}^n$ be a bounded domain and let $\mathcal{A} \subset \mathcal{C}(\bar��)$ be a uniform algebra generated by a set $F$ of holomorphic and pluriharmonic functions. Under natural assumptions on $��$ and $F$ we show t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2bb0480f1497567d15bb4256b8d1633c
We study toplogical properties of attracting sets for automorphisms of $\mathbb{C}^k$. Our main result is that a generic volume preserving automorphism has a hyperbolic fixed point with a dense stable manifold. We prove the same result for volume pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b8d5b0bbac5411b593ac0ab145b67b3
http://arxiv.org/abs/math/0610001
http://arxiv.org/abs/math/0610001
Autor:
Wold, Erlend Forn��ss
We show that for any $m\in\NN\cup\{\infty\}$ there exist $m$ disjoint FB domains whose union is dense in $\CC^k$. In fact we show that any point not in the union is a boundary point for all the domains. We construct FB domains that contains arbitrary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72a46cc000f263a25eb4428c4bff77fc
http://arxiv.org/abs/math/0410212
http://arxiv.org/abs/math/0410212