Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Wolak, R."'
Starting with a manifold $M$ and a semi-free action of $S^3$ on it, we have the Smith-Gysin sequence: $$ \cdots \to H^{*}( M) \to H^{*-3}(M/S^3, M^{S^3}) \oplus H^{*} (M^{S^3}) \to H^{*+1}(M/S^3, M^{S^3}) \to H^{*+1}(M) \to \cdots $$ In this paper, w
Externí odkaz:
http://arxiv.org/abs/2310.04309
Autor:
Saralegi-Aranguren, M., Wolak, R
Publikováno v:
Monatsh Math (2016) 180: 145
We prove that the basic intersection cohomology $IH^*_{\overline{p}}(M / \mathcal{F})$, where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, verifies the Poincar\'e Duality Pr
Externí odkaz:
http://arxiv.org/abs/1401.5816
Autor:
De Backer, G., Jankowski, P., Kotseva, K., Mirrakhimov, E., Reiner, Z., Rydén, L., Tokgözoğlu, L., Wood, D., De Bacquer, D., Abreu, A., Aguiar, C., Badariene, J., Bruthans, J., Castro Conde, A., Cifkova, R., Crowley, J., Davletov, K., Bacquer, D. De, De Smedt, D., De Sutter, J., Deckers, J.W., Dilic, M., Dolzhenko, M., Druais, H., Dzerve, V., Erglis, A., Fras, Z., Gaita, D., Gotcheva, N., Grobbee, D.E., Gyberg, V., Hasan Ali, H., Heuschmann, P., Hoes, A.W., Lalic, N., Lehto, S., Lovic, D., Maggioni, A.P., Mancas, S., Marques-Vidal, P., Mellbin, L., Miličić, D., Oganov, R., Pogosova, N., Reiner, Ž., Stagmo, M., Störk, S., Sundvall, J., Tsioufis, K., Vulic, D., Wood, D.A., Jennings, C., Adamska, A., Adamska, S., Tuomilehto, J., Schnell, O., Fiorucci, E., Glemot, M., Larras, F., Missiamenou, V., Maggioni, A., Taylor, C., Ferreira, T., Lemaitre, K., Raman, L., DeSmedt, D., Willems, A.M., De Pauw, M., Vervaet, P., Bollen, J., Dekimpe, E., Mommen, N., Van Genechten, G., Dendale, P., Bouvier, C.A., Chenu, P., Huyberechts, D., Persu, A., Begic, A., Durak Nalbantic, A., Dzubur, A., Hadzibegic, N., Iglica, A., Kapidjic, S., Osmanagic Bico, A., Resic, N., Sabanovic Bajramovic, N., Zvizdic, F., Kovacevic-Preradovic, T., Popovic-Pejicic, S., Djekic, D., Gnjatic, T., Knezevic, T., Kos, Lj, Stanetic, B., Topic, G., Georgiev, Borislav, Terziev, A., Vladimirov, G., Angelov, A., Kanazirev, B., Nikolaeva, S., Tonkova, D., Vetkova, M., Milicic, D., Bosnic, A., Dubravcic, M., Glavina, M., Mance, M., Pavasovic, S., Samardzic, J., Batinic, T., Crljenko, K., Delic-Brkljacic, D., Dula, K., Golubic, K., Klobucar, I., Kordic, K., Kos, N., Nedic, M., Olujic, D., Sedinic, V., Blazevic, T., Pasalic, A., Percic, M., Sikic, J., Cífková, R., Hašplová, K., Šulc, P., Wohlfahrt, P., Mayer, O., Jr., Cvíčela, M., Filipovský, J., Gelžinský, J., Hronová, M., Hasan-Ali, H., Bakery, S., Mosad, E., Hamed, H.B., Ibrahim, A., Elsharef, M.A., Kholef, E.F., Shehata, A., Youssef, M., Elhefny, E., Farid, H., Moustafa, T.M., Sobieh, M.S., Kabil, H., Abdelmordy, A., Kiljander, E., Kiljander, P., Koukkunen, H., Mustonen, J., Cremer, C., Frantz, S., Haupt, A., Hofmann, U., Ludwig, K., Melnyk, H., Noutsias, M., Karmann, W., Prondzinsky, R., Herdeg, C., Hövelborn, T., Daaboul, A., Geisler, T., Keller, T., Sauerbrunn, D., Walz-Ayed, M., Ertl, G., Leyh, R., Ehlert, T., Klocke, B., Krapp, J., Ludwig, T., Käs, J., Starke, C., Ungethüm, K., Wagner, M., Wiedmann, S., Tolis, P., Vogiatzi, G., Sanidas, E., Tsakalis, K., Kanakakis, J., Koutsoukis, A., Vasileiadis, K., Zarifis, J., Karvounis, C., Gibson, I., Houlihan, A., Kelly, C., O'Donnell, M., Bennati, M., Cosmi, F., Mariottoni, B., Morganti, M., Cherubini, A., Di Lenarda, A., Radini, D., Ramani, F., Francese, M.G., Gulizia, M.M., Pericone, D., Aigerim, K., Zholdin, B., Amirov, B., Assembekov, B., Chernokurova, E., Ibragimova, F., Kodasbayev, A., Markova, A., Asanbaev, A., Toktomamatov, U., Tursunbaev, M., Zakirov, U., Abilova, S., Arapova, R., Bektasheva, E., Esenbekova, J., Neronova, K., Baigaziev, K., Baitova, G., Zheenbekov, T., Andrejeva, T., Bajare, I., Kucika, G., Labuce, A., Putane, L., Stabulniece, M., Klavins, E., Sime, I., Gedvilaite, L., Pečiuraite, D., Sileikienė, V., Skiauteryte, E., Solovjova, S., Sidabraite, R., Briedis, K., Ceponiene, I., Jurenas, M., Kersulis, J., Martinkute, G., Vaitiekiene, A., Vasiljevaite, K., Veisaite, R., Plisienė, J., Šiurkaitė, V., Vaičiulis, Ž., Czarnecka, D., Kozieł, P., Podolec, P., Nessler, J., Gomuła, P., Mirek-Bryniarska, E., Bogacki, P., Wiśniewski, A., Pająk, A., Wolfshaut-Wolak, R., Bućko, J., Kamiński, K., Łapińska, M., Paniczko, M., Raczkowski, A., Sawicka, E., Stachurska, Z., Szpakowicz, M., Musiał, W., Dobrzycki, S., Bychowski, J., Kosior, D.A., Krzykwa, A., Setny, M., Rak, A., Gąsior, Z., Haberka, M., Szostak-Janiak, K., Finik, M., Liszka, J., Botelho, A., Cachulo, M., Sousa, J., Pais, A., Durazzo, A., Matos, D., Gouveia, R., Rodrigues, G., Strong, C., Guerreiro, R., Aguiar, J., Cruz, M., Daniel, P., Morais, L., Moreira, R., Rosa, S., Rodrigues, I., Selas, M., Apostu, A., Cosor, O., Gaita, L., Giurgiu, L., Hudrea, C., Maximov, D., Moldovan, B., Mosteoru, S., Pleava, R., Ionescu, M., Parepa, I., Arutyunov, A., Ausheva, A., Isakova, S., Karpova, A., Salbieva, A., Sokolova, O., Vasilevsky, A., Pozdnyakov, Y., Antropova, O., Borisova, L., Osipova, I., Aleksic, M., Crnokrak, B., Djokic, J., Hinic, S., Vukasin, T., Zdravkovic, M., Lalic, N.M., Jotic, A., Lalic, K., Lukic, L., Milicic, T., Macesic, M., Stanarcic Gajovic, J., Stoiljkovic, M., Djordjevic, D., Kostic, S., Tasic, I., Vukovic, A., Jug, B., Juhant, A., Krt, A., Kugonjič, U., Chipayo Gonzales, D., Gómez Barrado, J.J., Kounka, Z., Marcos Gómez, G., Mogollón Jiménez, M.V., Ortiz Cortés, C., Perez Espejo, P., Porras Ramos, Y., Colman, R., Delgado, J., Otero, E., Pérez, A., Fernández-Olmo, M.R., Torres-LLergo, J., Vasco, C., Barreñada, E., Botas, J., Campuzano, R., González, Y., Rodrigo, M., de Pablo, C., Velasco, E., Hernández, S., Lozano, C., González, P., Castro, A., Dalmau, R., Hernández, D., Irazusta, F.J., Vélez, A., Vindel, C., Gómez-Doblas, J.J., García Ruíz, V., Gómez, L., Gómez García, M, Jiménez-Navarro, M., Molina Ramos, A., Marzal, D., Martínez, G., Lavado, R., Vidal, A., Boström-Nilsson, V., Kjellström, B., Shahim, B., Smetana, S., Hansen, O., Stensgaard-Nake, E., Klijn, A.J., Mangus, T.J.P., Peters, R.J.G., Scholte op Reimer, W., Snaterse, M., Aydoğdu, S., Ç Erol, Otürk, S., Tulunay Kaya, C., Ahmetoğlu, Y., Ergene, O., Akdeniz, B., Çırgamış, D., Akkoyun H Kültürsay, S., Kayıkçıoğlu, M., Çatakoğlu, A.B., Çengel, A., Koçak, A.A., Ağırbaşlı, M.A., Açıksarı, G., Çekin, M.E., Kaya, E.B., Koçyiğit, D., Öngen, Z., Özmen, E., Sansoy, V., Kaya, A., Oktay, V., Temizhan, A., Ünal, S., İ Yakut, Kalkan, A.K., Bozkurt, E., Kasapkara, H.A., Faradzh, C., Hrubyak, L., Konoplianyk, L., Kozhuharyova, N., Lobach, L., Nesukai, V., Nudchenko, O., Simagina, T., Yakovenko, L., Azarenko, V., Potabashny, V., Bazylevych, A., Bazylevych, M., Kaminska, K., Panchenko, L., Shershnyova, O., Ovrakh, T., Serik, S., Kolesnik, T., Kosova, H., Hoye P Atkin, A., Fellowes, D., Lindsay, S., Atkinson, C., Kranilla, C., Vinod, M., Beerachee, Y., Bennett, C., Broome, M., Bwalya, A., Caygill, Lindsay, Dinning, L., Gillespie, A., Goodfellow, R., Guy, J., Idress, T., Mills, C., Morgan, C., Oustance, N., Singh, N., Yare, M., Jagoda, J.M., Bowyer, H., Christenssen, V., Groves, A., Jan, A., Riaz, A., Gill, M., Sewell, T.A., Gorog, D., Baker, M., De Sousa, P., Mazenenga, T., Porter, J., Haines, F., Peachey, T., Taaffe, J., Wells, K., Ripley, D.P., Forward, H., McKie, H., Pick, S.L., Thomas, H.E., Batin, P.D., Exley, D., Rank, T., Wright, J., Kardos, A., Sutherland, S.-B., Wren, L., Leeson, P., Barker, D., Moreby, B., Sawyer, J., Stirrup, J., Brunton, M., Brodison, A., Craig, J., Peters, S., Kaprielian, R., Bucaj, A., Mahay, K., Oblak, M., Gale, C., Pye, M., McGill, Y., Redfearn, H., Fearnley, M., De Backer, Guy, Jankowski, Piotr, Kotseva, Kornelia, Mirrakhimov, Erkin, Reiner, Željko, Rydén, Lars, Tokgözoğlu, Lale, Wood, David, De Bacquer, Dirk
Publikováno v:
In Atherosclerosis June 2019 285:135-146
Equivariant quantization is a new theory that highlights the role of symmetries in the relationship between classical and quantum dynamical systems. These symmetries are also one of the reasons for the recent interest in quantization of singular spac
Externí odkaz:
http://arxiv.org/abs/1001.4640
Autor:
Saralegi-Aranguren, M., Wolak, R.
Publikováno v:
Mathematische Zeitschrift 272 (2012) 443-457
We prove that the basic intersection cohomology $ {I H}^{^{*}}_{_{\bar{p}}}{(M/\mathcal{F})}, $ where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, is finite dimensional.
Externí odkaz:
http://arxiv.org/abs/1001.0387
Publikováno v:
Russian Journal of Mathematical Physics 16, 3 (2009) 450-466
In this paper we present some new results on the tautness of Riemannian foliations in their historical context. The first part of the paper gives a short history of the problem. For a closed manifold, the tautness of a Riemannian foliation can be cha
Externí odkaz:
http://arxiv.org/abs/0805.4714
Publikováno v:
Bulletin of the Polish Academy of Sciences 53(2005), 429-440.
It is known that, for a regular riemannian foliation on a compact manifold, the properties of its basic cohomology (non-vanishing of the top-dimensional group and Poincar\'e Duality) and the tautness of the foliation are closely related. If we consid
Externí odkaz:
http://arxiv.org/abs/math/0505676
Publikováno v:
Manuscripta math. 126(2008), 177 - 200
For a riemannian foliation $\mathcal{F}$ on a closed manifold $M$, it is known that $\mathcal{F}$ is taut (i.e. the leaves are minimal submanifolds) if and only if the (tautness) class defined by the mean curvature form $\kappa_\mu$ (relatively to a
Externí odkaz:
http://arxiv.org/abs/math/0505675
Autor:
Saralegi-Aranguren, M., Wolak, R.
Publikováno v:
Ann. Polon. Math. 89(2006), 203-246
We study the cohomology properties of the singular foliation $\F$ determined by an action $\Phi \colon G \times M\to M$ where the abelian Lie group $G$ preserves a riemannian metric on the compact manifold $M$. More precisely, we prove that the basic
Externí odkaz:
http://arxiv.org/abs/math/0401407
Autor:
Saralegi-Aranguren, M., Wolak, R.
Publikováno v:
Mat. Zametki 77(2005), 235-257 & Translation in Math. Notes(2005), 213-231.
In the paper we introduce the notions of a singular fibration and a singular Seifert fibration. These notions are natural generalizations of the notion of a locally trivial fibration to the category of stratified pseudomanifolds. For singular foliati
Externí odkaz:
http://arxiv.org/abs/math/0202013