Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Wojciech Dudzik"'
Autor:
Wojciech Dudzik
Publikováno v:
Kwartalnik Filmowy, Iss 100 (2017)
Szkic jest poświęcony dwóm filmom dokumentalnym Andrzeja Fidyka: Defilada (1989) i Carnaval. Największe party świata (1995) analizowanym w kontekście teorii święta Émile’a Durkheima (effervescence collective) i Victora Turnera (communitas)
Externí odkaz:
https://doaj.org/article/878584b10a1040c2af6fb24a57cdc64e
Publikováno v:
Proceedings of the Genetic and Evolutionary Computation Conference Companion.
Publikováno v:
Przegląd Humanistyczny / Humanistic Review. 424(03):145-158
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=97124
Publikováno v:
Recent Challenges in Intelligent Information and Database Systems ISBN: 9789811982330
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3e50bccb589583f807ec1bdc973ff645
https://doi.org/10.1007/978-981-19-8234-7_27
https://doi.org/10.1007/978-981-19-8234-7_27
Publikováno v:
ICPR
Support vector machines (SVMs) are a supervised learning technique that can be applied in both binary and multi-class classification and regression tasks. SVMs seamlessly handle continuous and categorical variables. Their training is, however, both t
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783030466428
BrainLes@MICCAI (2)
BrainLes@MICCAI (2)
In this paper, we exploit a cascaded U-Net architecture to perform detection and segmentation of brain tumors (low- and high-grade gliomas) from magnetic resonance scans. First, we detect tumors in a binary-classification setting, and they later unde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ca0f4f707e9a865b34d146e516966523
https://doi.org/10.1007/978-3-030-46643-5_17
https://doi.org/10.1007/978-3-030-46643-5_17
Publikováno v:
Advances in Intelligent Systems and Computing ISBN: 9783030319632
ICMMI
ICMMI
Support vector machine (SVM) is a well-known machine learning algorithm widely used for classification and regression problems. Despite the high prediction rate of this technique in a wide range of real applications, the efficiency of SVM and its cla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6dcdb4a6e5677cb08ee5a51c70559de
https://doi.org/10.1007/978-3-030-31964-9_22
https://doi.org/10.1007/978-3-030-31964-9_22
Autor:
Michael P. Hayball, Michal Kawulok, Marcin Cwiek, Pawel Wawrzyniak, Pawel Ulrych, Szymon Piechaczek, Wojciech Dudzik, Janusz Szymanek, M. Marcinkiewicz, Grzegorz Mrukwa, Pablo Ribalta Lorenzo, Barbara Bobek-Billewicz, Jakub Nalepa
Publikováno v:
ICIP
Data augmentation helps improve generalization of deep neural networks, and can be perceived as implicit regularization. It is pivotal in scenarios in which the amount of ground-truth data is limited, and acquiring new examples is costly and time-con
Publikováno v:
GECCO (Companion)
Support vector machine (SVM) classifiers can cope with many different classification tasks but improperly selected hyperparameters may deteriorate their performance. Moreover, datasets are getting bigger in terms of their size and the number of featu
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783030117252
BrainLes@MICCAI (2)
BrainLes@MICCAI (2)
Gliomas are the most common primary brain tumors, and their accurate manual delineation is a time- consuming and very user-dependent process. Therefore, developing automated techniques for reproducible detection and segmentation of brain tumors from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::10150580d043d732cb30a4f18a1b0db6
https://doi.org/10.1007/978-3-030-11726-9_2
https://doi.org/10.1007/978-3-030-11726-9_2