Zobrazeno 1 - 10
of 1 493
pro vyhledávání: '"Woike A"'
Autor:
Müller, Lukas, Woike, Lukas
Given a finite ribbon category, which is a particular case of a cyclic algebra over the operad of genus zero surfaces, there are two possibilities for an extension defined on all three-dimensional handlebodies: On the one hand, one can use the admiss
Externí odkaz:
http://arxiv.org/abs/2409.17047
Autor:
Woike, Lukas
Monoidal categories with additional structure such as a braiding or some form of duality abound in quantum topology. They often appear in tandem with Frobenius algebras inside them. Motivations for this range from the theory of module categories to t
Externí odkaz:
http://arxiv.org/abs/2408.02644
Autor:
Müller, Lukas, Woike, Lukas
In this short note, we classify linear categorified open topological field theories in dimension two by pivotal Grothendieck-Verdier categories. In combination with recently developed string-net techniques, this leads to a new description of the spac
Externí odkaz:
http://arxiv.org/abs/2406.11605
The Levin-Wen string-nets of a spherical fusion category $\mathcal{C}$ describe, by results of Kirillov and Bartlett, the representations of mapping class groups of closed surfaces obtained from the Turaev-Viro construction applied to $\mathcal{C}$.
Externí odkaz:
http://arxiv.org/abs/2312.14010
Autor:
Müller, Lukas, Woike, Lukas
We calculate the Dehn twist action on the spaces of conformal blocks of a not necessarily semisimple modular category. In particular, we give the order of the Dehn twists under the mapping class group representations of closed surfaces. For Dehn twis
Externí odkaz:
http://arxiv.org/abs/2311.16020
Autor:
Jana Willim, Daniel Woike, Daniel Greene, Sarada Das, Kevin Pfeifer, Weimin Yuan, Anika Lindsey, Omar Itani, Amber L. Böhme, Debora Tibbe, Hans-Hinrich Hönck, Fatemeh Hassani Nia, Undiagnosed Diseases Network, Michael Zech, Theresa Brunet, Laurence Faivre, Arthur Sorlin, Antonio Vitobello, Thomas Smol, Cindy Colson, Kristin Baranano, Krista Schatz, Allan Bayat, Kelly Schoch, Rebecca Spillmann, Erica E. Davis, Erin Conboy, Francesco Vetrini, Konrad Platzer, Sonja Neuser, Janina Gburek-Augustat, Alexandra Noel Grace, Bailey Mitchell, Alexander Stegmann, Margje Sinnema, Naomi Meeks, Carol Saunders, Maxime Cadieux-Dion, Juliane Hoyer, Julien Van-Gils, Jean-Madeleine de Sainte-Agathe, Michelle L. Thompson, E. Martina Bebin, Monika Weisz-Hubshman, Anne-Claude Tabet, Alain Verloes, Jonathan Levy, Xenia Latypova, Sönke Harder, Gary A. Silverman, Stephen C. Pak, Tim Schedl, Kathleen Freson, Andrew Mumford, Ernest Turro, Christian Schlein, Vandana Shashi, Hans-Jürgen Kreienkamp
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-18 (2024)
Abstract Members of the leucine rich repeat (LRR) and PDZ domain (LAP) protein family are essential for animal development and histogenesis. Densin-180, encoded by LRRC7, is the only LAP protein selectively expressed in neurons. Densin-180 is a posts
Externí odkaz:
https://doaj.org/article/fa7e561bde0647a3a38569265135f1c2
Autor:
Brochier, Adrien, Woike, Lukas
Modular functors are traditionally defined as systems of projective representations of mapping class groups of surfaces that are compatible with gluing. They can formally be described as modular algebras over central extensions of the modular surface
Externí odkaz:
http://arxiv.org/abs/2212.11259
Autor:
Müller, Lukas, Woike, Lukas
We prove that the Drinfeld center $Z(\mathcal{C})$ of a pivotal finite tensor category $\mathcal{C}$ comes with the structure of a ribbon Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. Phrased operadically, this makes $Z(\mathcal
Externí odkaz:
http://arxiv.org/abs/2212.07910
Autor:
Schweigert, Christoph, Woike, Lukas
It is easy to find algebras $\mathbb{T}\in\mathcal{C}$ in a finite tensor category $\mathcal{C}$ that naturally come with a lift to a braided commutative algebra $\mathsf{T}\in Z(\mathcal{C})$ in the Drinfeld center of $\mathcal{C}$. In fact, any fin
Externí odkaz:
http://arxiv.org/abs/2204.09018
Autor:
Müller, Lukas, Woike, Lukas
Publikováno v:
Int. Math. Res. Not. rnad178, 2023
The classifying spaces of handlebody groups form a modular operad. Algebras over the handlebody operad yield systems of representations of handlebody groups that are compatible with gluing. We prove that algebras over the modular operad of handlebodi
Externí odkaz:
http://arxiv.org/abs/2201.07542