Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Wohofsky, Wolfgang"'
Autor:
Brendle, Joerg, Wohofsky, Wolfgang
We show in ZFC that there is no set of reals of size continuum which can be translated away from every set in the Marczewski ideal. We also show that in the Cohen model, every set with this property is countable.
Externí odkaz:
http://arxiv.org/abs/2401.04300
Using a game characterization of distributivity, we show that base matrices for $\mathcal{P}(\omega)/\text{fin}$ of regular height larger than $\mathfrak{h}$ necessarily have maximal branches which are not cofinal.
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
http://arxiv.org/abs/2203.02581
We construct a model in which there exists a distributivity matrix of regular height $\lambda$ larger than $\mathfrak{h}$; both $\lambda = \mathfrak{c}$ and $\lambda < \mathfrak{c}$ are possible. A distributivity matrix is a refining system of mad fa
Externí odkaz:
http://arxiv.org/abs/2202.09255
We investigate generalizations of the topology of the higher Cantor space on $2^\kappa$, based on arbitrary ideals rather than the bounded ideal on $\kappa$. Our main focus is on the topology induced by the nonstationary ideal, and we call this topol
Externí odkaz:
http://arxiv.org/abs/2111.07339
We prove that any suitable generalization of Laver forcing to the space $ \kappa^\kappa$, for uncountable regular $\kappa$, necessarily adds a Cohen $\kappa$-real. We also study a dichotomy and an ideal naturally related to generalized Laver forcing.
Externí odkaz:
http://arxiv.org/abs/2009.01886
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Annals of Pure and Applied Logic October-November 2023 174(9)
Publikováno v:
In Annals of Pure and Applied Logic April 2022 173(4)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that the cofinalities of both the Miller ideal m^0 (the sigma-ideal naturally related to Miller forcing) and the Laver ideal ell^0 (related to Laver forcing) are larger than the size of the continuum in ZFC.
Externí odkaz:
http://arxiv.org/abs/1611.08143