Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Witold Jarczyk"'
Autor:
Witold Jarczyk, Justyna Jarczyk
Publikováno v:
Annales Mathematicae Silesianae, Vol 34, Iss 1, Pp 96-103 (2020)
Given a continuous strictly monotonic real-valued function α, defined on an interval I, and a function ω : I → (0, +∞) we denote by B α ω the Bajraktarević mean generated by α and weighted by ω: B ω α ( x , y ) = α - 1 ( ω ( x ) ω ( x
Autor:
Justyna Jarczyk, Witold Jarczyk
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:6837-6844
Gauss-type iterates for random means are considered and their limit behaviour is studied. Among others the invariance of the limit with respect to the given random mean-type mapping \begin{document}$ {\bf{M}} $\end{document} is established under some
Publikováno v:
Aequationes mathematicae. 94:679-687
We determine the form of all semiflows of pairs of weighted quasi-arithmetic means, those over positive dyadic numbers as well as the continuous ones. Then the iterability of such pairs is characterized: necessary and sufficient conditions for a give
Publikováno v:
Mathematical Inequalities & Applications. :1123-1136
Autor:
Paweł Pasteczka, Witold Jarczyk
Publikováno v:
Aequationes mathematicae. 93:239-246
Given a set $$T\subset (0, +\infty )$$ , a function $$c:T\rightarrow \mathbb R$$ and a real number p we study continuous solutions $$\varphi $$ of the simultaneous equations $$\begin{aligned} \varphi (tx)=\varphi (x)+c(t)x^p, \qquad t \in T. \end{ali
Autor:
Witold Jarczyk, Justyna Jarczyk
Publikováno v:
Aequationes mathematicae. 92:801-872
We give a survey of results dealing with the problem of invariance of means which, for means of two variables, is expressed by the equality $$K\circ \left( M,N\right) =K$$ . At the very beginning the Gauss composition of means and its strict connecti
Publikováno v:
Discrete and Continuous Dynamical Systems. 42:4965
This paper aims to an open problem on iterative roots of PM functions, a class of non-monotonic functions. The open problem asks: Does a PM function of nonmonotonicity height \begin{document}$ \ge 2 $\end{document} have a continuous iterative root of
Publikováno v:
Aequationes mathematicae. 95:599-600
Autor:
Justyna Jarczyk, Witold Jarczyk
Publikováno v:
Publicationes Mathematicae Debrecen. 91:235-246
Publikováno v:
Journal of Difference Equations and Applications. 24:729-735
We determine all pairs Aμφ,Aνψ of weighted quasi-arithmetic means being square iterative roots of another pair Asf,Atg, that is we find all continuous strictly monotonic functions f,g,φ,ψ and parameters s,t,μ,ν∈(0,1) such that the equationA