Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Witold Cecot"'
Autor:
Marek Klimczak, Witold Cecot
Publikováno v:
Applied Sciences, Vol 10, Iss 3, p 765 (2020)
In this paper, we present an enhanced framework for the synthetic asphalt concrete (AC) microstructure generation for the numerical analysis purposes. It is based on the Voronoi tessellation concept with some necessary extensions that allow for the r
Externí odkaz:
https://doaj.org/article/27c03c75eb0b4a6b9727187d928a70ef
Publikováno v:
Computers & Mathematics with Applications. 110:110-122
Publikováno v:
Computers & Mathematics with Applications. 102:113-136
Application of a Discontinuous Petrov-Galerkin (DPG) method for simulation of compressible viscous flows in three dimensions is presented. The approach enables construction of stable schemes for problems with a small perturbation parameter. The main
Autor:
Mateusz Dryzek, Witold Cecot
Publikováno v:
International Journal for Numerical Methods in Engineering. 122:6714-6735
Autor:
Witold Cecot, Marta Oleksy
Publikováno v:
Computers & Mathematics with Applications. 95:28-40
We present the application of the Discontinuous Petrov–Galerkin (DPG) methodology for the mixed Multiscale Finite Element Method (MsFEM). The MsFEM upscaling technique relies on incorporating fine-scale features through special, in a sense optimize
Publikováno v:
Finite Elements in Analysis and Design. 215:103876
Autor:
Mateusz Dryzek, Witold Cecot
Publikováno v:
International Journal for Multiscale Computational Engineering. 18:439-454
Autor:
Witold Cecot, Marek Klimczak
Publikováno v:
International Journal for Numerical Methods in Engineering. 114:861-881
Publikováno v:
AIP Conference Proceedings.
The Discontinuous Petrov-Galerkin (DPG) method allows one to construct stable finite element schemes for some classes of singularily perturbed problems like, for instance, convection-dominated diffusion. The central ingredient of the method is a spec
Autor:
Witold Cecot, Marta Oleksy
Publikováno v:
AIP Conference Proceedings.
The mixed finite element method uses an approximation of at least two fields (e.g. displacements and stresses). Even though it is difficult to construct stable approximation for such formulations, the mixed methods provide much better convergence of