Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Wissbrock, F."'
Autor:
Ablinger, J., Blümlein, J., De Freitas, A., Goedicke, A., Schneider, C., Schönwald, K., Wißbrock, F.
We report on our latest results in the calculation of the two--mass contributions to 3--loop operator matrix elements (OMEs). These OMEs are needed to compute the corresponding contributions to the deep-inealstic scattering structure functions and to
Externí odkaz:
http://arxiv.org/abs/1712.00745
Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two diff
Externí odkaz:
http://arxiv.org/abs/1705.07030
Autor:
Ablinger, J., Behring, A., Blümlein, J., Falcioni, G., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.
We present recent results on newly calculated 2- and 3-loop contributions to the heavy quark parts of the structure functions in deep-inelastic scattering due to charm and bottom.
Comment: Contribution to the Proc. of Loops and Legs 2016, PoS, i
Comment: Contribution to the Proc. of Loops and Legs 2016, PoS, i
Externí odkaz:
http://arxiv.org/abs/1609.03397
Autor:
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Raab, C. G., Round, M., Schneider, C., Wißbrock, F.
Publikováno v:
PoS (EPS-HEP2015) 504
A survey is given on the status of 3-loop heavy flavor corrections to deep-inelastic structure functions at large enough virtualities $Q^2$.
Comment: 13 pages Latex, 8 Figures, Contribution to the Proceedings of EPS 2015 Wien
Comment: 13 pages Latex, 8 Figures, Contribution to the Proceedings of EPS 2015 Wien
Externí odkaz:
http://arxiv.org/abs/1602.00583
Autor:
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Raab, C., Round, M., Schneider, S., Wißbrock, F.
We present our most recent results on the calculation of the heavy flavor contributions to deep-inelastic scattering at 3-loop order in the large $Q^2$ limit, where the heavy flavor Wilson coefficients are known to factorize into light flavor Wilson
Externí odkaz:
http://arxiv.org/abs/1409.1804
Autor:
Ablinger, A., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Raab, C., Round, M., Schneider, C., Wißbrock, F.
We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region $Q^2 \gg m^2$. We discuss the different methods used to compute the requi
Externí odkaz:
http://arxiv.org/abs/1407.3638
Autor:
Ablinger, J., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.
We consider gluonic contributions to the heavy flavor Wilson coefficients at 3-loop order in QCD with two heavy quark lines in the asymptotic region $Q^2 \gg m_{1(2)}^2$. Here we report on the complete result in the case of two equal masses $m_1 = m_
Externí odkaz:
http://arxiv.org/abs/1407.2821
Autor:
Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.
We calculate the massive flavor non-singlet Wilson coefficient for the heavy flavor contributions to the structure function $F_2(x,Q^2)$ in the asymptotic region $Q^2 \gg m^2$ and the associated operator matrix element $A_{qq,Q}^{(3), \rm NS}(N)$ to
Externí odkaz:
http://arxiv.org/abs/1406.4654
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2 \gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the mas
Externí odkaz:
http://arxiv.org/abs/1403.6356
Autor:
Ablinger, J., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wissbrock, F.
We calculate the massive operator matrix element $A_{gq}^{(3)}(N)$ to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable $N$. This is the first complete transition function needed in the variable flavor number scheme obta
Externí odkaz:
http://arxiv.org/abs/1402.0359