Zobrazeno 1 - 10
of 163
pro vyhledávání: '"Wireless traffic"'
Publikováno v:
Journal of Cloud Computing: Advances, Systems and Applications, Vol 13, Iss 1, Pp 1-16 (2024)
Abstract In the rapidly evolving landscape of Industry 4.0, the complex computational tasks and the associated massive data volumes present substantial opportunities for advancements in machine learning at industry edges. Federated learning (FL), whi
Externí odkaz:
https://doaj.org/article/e9ab5960a02e4eb2bbec2410a0e2778e
Publikováno v:
IEEE Access, Vol 12, Pp 130983-130994 (2024)
This paper designs a novel energy-efficient hybrid federated and centralized learning (HFCL) framework for training wireless traffic prediction models in aerial networks over distributed multi-access edge computing (MEC) servers where multiple networ
Externí odkaz:
https://doaj.org/article/38a4a2ea6da84ac88c6d6fd7476c05a3
Publikováno v:
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 7, Iss 6, Pp 1332-1340 (2023)
For the optimization of computer networks with high bandwidth requirements, it is necessary to predict the traffic of the wireless network. Its goal is to reduce maintenance costs and improve internet services. Feature selection is a major issue in m
Externí odkaz:
https://doaj.org/article/052a658c67b4444e80890f4ca3951da5
Publikováno v:
Mathematics, Vol 12, Iss 16, p 2539 (2024)
Wireless traffic prediction is essential to developing intelligent communication networks that facilitate efficient resource allocation. Along this line, decentralized wireless traffic prediction under the paradigm of federated learning is becoming i
Externí odkaz:
https://doaj.org/article/bcecf5e6f46f4b1dbb2c507a001292d5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yongqin Fu, Xianbin Wang
Publikováno v:
IEEE Open Journal of the Communications Society, Vol 3, Pp 159-175 (2022)
Due to the greatly increased bandwidth of 5G networks compared with that of 4G networks, the power consumption brought by baseband signal processing of 5G networks is much higher, which inevitably raises the operation expenditures. Cloud Radio Access
Externí odkaz:
https://doaj.org/article/93b11869af8741e6ab1e8cc161d0e881
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Short term prediction of wireless traffic based on tensor decomposition and recurrent neural network
Publikováno v:
SN Applied Sciences, Vol 3, Iss 9, Pp 1-14 (2021)
Abstract This paper proposes a wireless network traffic prediction model based on Bayesian Gaussian tensor decomposition and recurrent neural network with rectified linear unit (BGCP-RNN-ReLU model), which can effectively predict the changes in the u
Externí odkaz:
https://doaj.org/article/58f2fc83bc1c42fa89894826f9e9f6a1
Publikováno v:
Applied Sciences, Vol 13, Iss 6, p 4036 (2023)
Wireless traffic prediction is critical to the intelligent operation of cellular networks, such as load balancing, congestion control, value-added service promotion, etc. However, the BTS data in each region has certain differences and privacy, and c
Externí odkaz:
https://doaj.org/article/50950647980a4f03a03c6ea4709e7e54