Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Wiqvist, Samuel"'
We introduce the sequential neural posterior and likelihood approximation (SNPLA) algorithm. SNPLA is a normalizing flows-based algorithm for inference in implicit models, and therefore is a simulation-based inference method that only requires simula
Externí odkaz:
http://arxiv.org/abs/2102.06522
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, opti
Externí odkaz:
http://arxiv.org/abs/1907.09851
Publikováno v:
Proceedings of the 36th International Conference on Machine Learning, PMLR 97:6798--6807, 2019
We present a novel family of deep neural architectures, named partially exchangeable networks (PENs) that leverage probabilistic symmetries. By design, PENs are invariant to block-switch transformations, which characterize the partial exchangeability
Externí odkaz:
http://arxiv.org/abs/1901.10230
Autor:
Wiqvist, Samuel, Picchini, Umberto, Forman, Julie Lyng, Lindorff-Larsen, Kresten, Boomsma, Wouter
Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability distribution via a two-stages version of the Metropolis-Hastings algorithm, by combining the target distribution with a "surrogate" (i.e. an approximate and computationa
Externí odkaz:
http://arxiv.org/abs/1806.05982
Publikováno v:
In Computational Statistics and Data Analysis May 2021 157
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wiqvist, Samuel
Publikováno v:
Doctoral Theses in Mathematical Sciences; 2021(09) (2021)
This doctoral thesis in computational statistics utilizes both Monte Carlo methods(approximate Bayesian computation and sequential Monte Carlo) and machine-learning methods (deep learning and normalizing flows) to develop novel algorithms for infer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1110::fc6566fde564b9986b9f005b866211f6
https://lup.lub.lu.se/record/f0a13485-bf5e-42df-a67f-60aeaa660054
https://lup.lub.lu.se/record/f0a13485-bf5e-42df-a67f-60aeaa660054