Zobrazeno 1 - 10
of 1 594
pro vyhledávání: '"Winkler, Michael A."'
Autor:
Nikolić, Vanja, Winkler, Michael
The Jordan-Moore-Gibson-Thompson equation \[ \tau u_{ttt} + \alpha u_{tt} = \beta \Delta u_t + \gamma \Delta u + (f(u))_{tt} \] is considered in a smoothly bounded domain $\Omega \subset\mathbb{R}^n$ with $n\leq 3$, where $\tau>0,\beta>0,\gamma>0$, a
Externí odkaz:
http://arxiv.org/abs/2402.01595
Autor:
Fuest, Mario, Winkler, Michael
The chemotaxis-Navier-Stokes system \begin{equation*}\label{1} \left\{ \begin{array}{rcl} n_t+u\cdot\nabla n &=& \Delta \big(n c^{-\alpha} \big), \\[1mm] c_t+ u\cdot\nabla c &=& \Delta c -nc,\\[1mm] u_t + (u\cdot\nabla) u &=&\Delta u+\nabla P + n\nab
Externí odkaz:
http://arxiv.org/abs/2401.09832
Autor:
Winkler, Michael
In a smoothly bounded convex domain $\Omega\subset R^n$ with $n\ge 1$, a no-flux initial-boundary value problem for \[ \left\{ \begin{array}{l} u_t=\Delta \big(u\phi(v)\big), v_t=\Delta v-uv, \end{array} \right. \] is considered under the assumption
Externí odkaz:
http://arxiv.org/abs/2312.12409
A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems, information about the relationships between variables is either incomplete or highly complex, making it difficult
Externí odkaz:
http://arxiv.org/abs/2312.08074
The Cauchy problem in $\mathbb R^n$ is considered for \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v),\\ 0 = \Delta v + u. \end{array} \right. \end{eqnarray*} For each $n\ge 10$, a statement on stability and attra
Externí odkaz:
http://arxiv.org/abs/2309.15633
Autor:
Lankeit, Johannes, Winkler, Michael
We give an overview of analytical results concerned with chemotaxis systems where the signal is absorbed. We recall results on existence and properties of solutions for the prototypical chemotaxis-consumption model and various variants and review mor
Externí odkaz:
http://arxiv.org/abs/2304.02449
Autor:
Painter, Kevin J, Winkler, Michael
We consider a phenotype-switching chemotaxis model for aggregation, in which a chemotactic population is capable of switching back and forth between a chemotaxing state (performing chemotactic movement) and a secreting state (producing the attractant
Externí odkaz:
http://arxiv.org/abs/2210.04805
Autor:
Winkler, Michael
The taxis-type migration-consumption model accounting for signal-dependent motilities, as given by \[ u_t = \Delta \big(u\phi(v)\big), v_t = \Delta v-uv, \qquad (*) \] is considered for suitably smooth functions $\phi:[0,\infty)\to R$ which are such
Externí odkaz:
http://arxiv.org/abs/2209.12724
Autor:
Winkler Michael
Publikováno v:
Advanced Nonlinear Studies, Vol 24, Iss 3, Pp 592-615 (2024)
In a smoothly bounded convex domain Ω⊂Rn ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem forut=Δuϕ(v),vt=Δv−uv, $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={
Externí odkaz:
https://doaj.org/article/1a44a57dd3a940e58ce8c369c4fba5b0
Autor:
Li, Genglin, Winkler, Michael
We consider the Keller-Segel-type migration-consumption system involving signal-dependent motilities, $$\left\{ \begin{array}{l} u_t = \Delta \big(u\phi(v)\big), \\[1mm] v_t = \Delta v-uv, \end{array} \right. \qquad \qquad$$ in smoothly bounded domai
Externí odkaz:
http://arxiv.org/abs/2206.13327