Zobrazeno 1 - 10
of 205
pro vyhledávání: '"Winicour, P"'
Choptuik's critical phenomena in general relativity is revisited in the affine-null metric formulation of Einstein's equations for a massless scalar field in spherical symmetry. Numerical solutions are obtained by evolution of initial data using pseu
Externí odkaz:
http://arxiv.org/abs/2405.19122
Publikováno v:
Phys. Rev. D 100, 104017 (2019)
A new evolution algorithm for the characteristic initial value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically symmetric case to the gravitational collap
Externí odkaz:
http://arxiv.org/abs/1910.03439
Autor:
Mädler, Thomas, Winicour, Jeffrey
Publikováno v:
Class. Quantum Grav. 36 (2019) 095009 (19pp)
The Minkowski background intrinsic to the Kerr-Schild version of the Kerr metric provides a definition of a boosted spinning black hole. There are two Kerr-Schild versions corresponding to ingoing or outgoing principal null directions. The two corres
Externí odkaz:
http://arxiv.org/abs/1811.04711
Autor:
Rácz, István, Winicour, Jeffrey
Publikováno v:
Classical and Quantum Gravity, v. 35, p. 135002 (2018)
Two new methods have been proposed for solving the gravitational constraints without using elliptic solvers by formulating them as either an algebraic-hyperbolic or parabolic-hyperbolic system. Here, we compare these two methods and present a unified
Externí odkaz:
http://arxiv.org/abs/1712.03294
Autor:
Mädler, Thomas, Winicour, Jeffrey
Publikováno v:
Class. Quantum Grav. 35 (2018) 035009
The Kerr-Schild version of the Schwarzschild metric contains a Minkowski background which provides a definition of a boosted black hole. There are two Kerr-Schild versions corresponding to ingoing or outgoing principle null directions. We show that t
Externí odkaz:
http://arxiv.org/abs/1708.08774
Autor:
Winicour, Jeffrey
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the
Externí odkaz:
http://arxiv.org/abs/1704.00863
Autor:
Mädler, Thomas, Winicour, Jeffrey
We investigate gravitational radiation memory and its corresponding effect on the asymptotic symmetries of a body whose exterior is a boosted Schwarzschild spacetime. First, in the context of linearized theory, we consider such a Schwarzschild body w
Externí odkaz:
http://arxiv.org/abs/1701.02556
Autor:
Mädler, Thomas, Winicour, Jeffrey
Publikováno v:
Scholarpedia, 11(12):33528 (2016)
The Bondi-Sachs formalism of General Relativity is a metric-based treatment of the Einstein equations in which the coordinates are adapted to the null geodesics of the spacetime. It provided the first convincing evidence that gravitational radiation
Externí odkaz:
http://arxiv.org/abs/1609.01731
We present a new approach for the Cauchy-characteristic extraction of gravitational radiation strain, news function, and the flux of the energy-momentum, supermomentum and angular momentum associated with the Bondi-Metzner-Sachs asymptotic symmetries
Externí odkaz:
http://arxiv.org/abs/1605.04332
Autor:
Mädler, Thomas, Winicour, Jeffrey
Publikováno v:
Class. Quantum Grav. 33 (2016) 175006
The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times.
Externí odkaz:
http://arxiv.org/abs/1605.01273