Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Wills, Stephen J."'
The method of Feynman-Kac perturbation of quantum stochastic processes has a long pedigree, with the theory usually developed within the framework of processes on von Neumann algebras. In this work, the theory of operator spaces is exploited to enabl
Externí odkaz:
http://arxiv.org/abs/2407.06732
Autor:
Lindsay, J. Martin, Wills, Stephen J.
Quantum stochastic cocycles provide a basic model for time-homogeneous Markovian evolutions in a quantum setting, and a direct counterpart in continuous time to quantum random walks, in both the Schrodinger and Heisenberg pictures. This paper is a se
Externí odkaz:
http://arxiv.org/abs/2012.05635
We introduce a new distributional invariance principle, called `partial spreadability', which emerges from the representation theory of the Thompson monoid $F^+$ in noncommutative probability spaces. We show that a partially spreadable sequence of no
Externí odkaz:
http://arxiv.org/abs/2009.14811
Publikováno v:
In Journal of Functional Analysis 15 March 2023 284(6)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Indian Journal of Pure & Applied Mathematics; Sep2024, Vol. 55 Issue 3, p1062-1083, 22p
It is shown how to construct *-homomorphic quantum stochastic Feller cocycles for certain unbounded generators, and so obtain dilations of strongly continuous quantum dynamical semigroups on C* algebras; this generalises the construction of a classic
Externí odkaz:
http://arxiv.org/abs/1209.3639
Autor:
Lindsay, J. Martin, Wills, Stephen J.
An operator space analysis of quantum stochastic cocycles is undertaken. These are cocycles with respect to an ampliated CCR flow, adapted to the associated filtration of subspaces, or subalgebras. They form a noncommutative analogue of stochastic se
Externí odkaz:
http://arxiv.org/abs/1101.0177
Autor:
Wills, Stephen J.
The subordinate E-semigroups of a fixed E-semigroup are in one-to-one correspondence with local projection-valued cocycles of that semigroup. For the CCR flow we characterise these cocycles in terms of their stochastic generators, that is, in terms o
Externí odkaz:
http://arxiv.org/abs/1008.0774