Zobrazeno 1 - 10
of 214
pro vyhledávání: '"Williams, Marshall"'
Autor:
Morgan, Christopher, Hargreaves, Mathew, Williams, Marshall, Hoyt, Robert E., Snider, Dallas H., Callanan, Mark, Nelson, Andrea, Brabston, Eugene W., Momaya, Amit M., Ponce, Brent A., O'Grady, Christopher
Publikováno v:
In Journal of Orthopaedics October 2024 56:6-11
Autor:
Williams, Marshall1,2 (AUTHOR), Harris, Robert M.3 (AUTHOR) harrisrm3@etsu.edu
Publikováno v:
Orthopaedic Surgery. Jun2024, Vol. 16 Issue 6, p1277-1283. 7p.
Autor:
Paul, Kyle, Elphingstone, Joseph W., Williams, Marshall, Manfredi, John N., Jardaly, Achraf, Schick, Samuel, Floyd, Susan, Brabston, Eugene W., Momaya, Amit M., Ponce, Brent A.
Publikováno v:
In JSES International March 2024 8(2):250-256
Autor:
Wilkinson, Eric B., Gruenberger, Eric H., Elphingstone, Joseph W., Williams, Marshall D., Vatsia, Sohrab K., Girardi, Abdias, Knudsen, Michael L., Brabston, Eugene W., Braman, Jonathan P., Ponce, Brent A.
Publikováno v:
In Seminars in Arthroplasty: JSES September 2023 33(3):463-470
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Guo, Chang-Yu, Williams, Marshall
In this paper, we develop the foundations of the theory of quasiregular mappings in general metric measure spaces. In particular, nine definitions of quasiregularity for a discrete open mapping with locally bounded multiplicity are proved to be quant
Externí odkaz:
http://arxiv.org/abs/1611.02478
Autor:
Guo, Chang-Yu, Williams, Marshall
Assume that $X$ and $Y$ are locally compact and locally doubling metric spaces, which are also generalized $n$-manifolds, that $X$ is locally linearly locally $n$-connected, and that $Y$ has bounded turning. In this paper, addressing Heinonen's ICM 0
Externí odkaz:
http://arxiv.org/abs/1509.02638
In this paper, we provide an alternative appraoch to an expectaion of F\"assler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular subRiemannian manifolds of homogeneous dimension $Q\geq 2$ has a neg
Externí odkaz:
http://arxiv.org/abs/1505.00891
Autor:
Williams, Marshall V.1,2 (AUTHOR), Mena-Palomo, Irene2 (AUTHOR), Cox, Brandon2 (AUTHOR), Ariza, Maria Eugenia1,2 (AUTHOR) maria.ariza@osumc.edu
Publikováno v:
Cancers. Feb2023, Vol. 15 Issue 3, p855. 18p.
We show that if $f:X\to Y$ is a quasisymmetric mapping between Ahlfors regular spaces, then $\dim_H f(E)\leq\dim_H E$ for "almost every" bounded Ahlfors regular set $E\subseteq X$. If additionally, $X$ and $Y$ are Loewner spaces then $\dim_H f(E)=\di
Externí odkaz:
http://arxiv.org/abs/1211.0233