Zobrazeno 1 - 10
of 283
pro vyhledávání: '"William J. Dally"'
Publikováno v:
IEEE Transactions on Industrial Electronics. 70:4751-4761
Autor:
Ben Keller, Rangharajan Venkatesan, Steve Dai, Stephen G. Tell, Brian Zimmer, Charbel Sakr, William J. Dally, C. Thomas Gray, Brucek Khailany
Publikováno v:
IEEE Journal of Solid-State Circuits. 58:1129-1141
Autor:
William J. Dally
Publikováno v:
GetMobile: Mobile Computing and Communications. 25:12-18
A mechanical ventilator keeps a patient with respiratory failure alive by pumping precisely controlled amounts of air (or an air/O2 mixture) at controlled pressure into the patient's lungs [3, 5]. During intake (inspiration), the ventilator meters th
Publikováno v:
IEEE Micro. 41:42-51
Graphics processing units (GPUs) power today’s fastest supercomputers, are the dominant platform for deep learning, and provide the intelligence for devices ranging from self-driving cars to robots and smart cameras. They also generate compelling p
Autor:
Peter M. Kogge, William J. Dally
Publikováno v:
2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS).
Autor:
Yoshinori Nishi, John W. Poulton, Walker J. Turner, Xi Chen, Sanquan Song, Brian Zimmer, Stephen G. Tell, Nikola Nedovic, John M. Wilson, William J. Dally, C. Thomas Gray
Publikováno v:
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).
Autor:
Ben Keller, Rangharajan Venkatesan, Steve Dai, Stephen G. Tell, Brian Zimmer, William J. Dally, C. Thomas Gray, Brucek Khailany
Publikováno v:
2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).
Autor:
Steve Dai, Ben Keller, William J. Dally, Brucek Khailany, Rangharajan Venkatesan, Alicia Klinefelter, Robert M. Kirby, Saad Godil, Yanqing Zhang, Haoxing Ren, Bryan Catanzaro
Publikováno v:
IEEE Micro. 40:23-32
Recent advancements in machine learning provide an opportunity to transform chip design workflows. We review recent research applying techniques such as deep convolutional neural networks and graph-based neural networks in the areas of automatic desi
Publikováno v:
Communications of the ACM. 63:48-57
DSAs gain efficiency from specialization and performance from parallelism.
Autor:
Joel Emer, Matthew Fojtik, C. Thomas Gray, Ben Keller, Stephen G. Tell, Priyanka Raina, Stephen W. Keckler, Alicia Klinefelter, William J. Dally, Brucek Khailany, Brian Zimmer, Jason Clemons, Rangharajan Venkatesan, Nan Jiang, Yanqing Zhang, Nathaniel Pinckney, Yakun Sophia Shao
Publikováno v:
IEEE Journal of Solid-State Circuits. 55:920-932
Custom accelerators improve the energy efficiency, area efficiency, and performance of deep neural network (DNN) inference. This article presents a scalable DNN accelerator consisting of 36 chips connected in a mesh network on a multi-chip-module (MC