Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Wilfredo Urbina Romero"'
Publikováno v:
Revista Colombiana de Matemáticas, Volume: 55, Issue: 1, Pages: 21-41, Published: 04 NOV 2021
The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {T t } t≥0 in ℝ d , on Gaussian variable Lebesgue spaces L p(·) (γ d ), under a condition of regularity on p(·) follow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51500abf1162e34fc2387c2d471f7311
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter we are going to define and study the Ornstein–Uhlenbeck operator and the Ornstein–Uhlenbeck semigroup. They are analogous, in the Gaussian harmonic analysis, to the Laplacian and the heat semigroup in the classical case. Then, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d381811313b97f872bf8278527a449b7
https://doi.org/10.1007/978-3-030-05597-4_2
https://doi.org/10.1007/978-3-030-05597-4_2
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter, we study spectral multiplier operators for Hermite polynomial expansions. First, we consider Meyer’s multiplier theorem, which is one of the most basic and most useful results for Hermite expansions. Then, we consider spectral mult
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::94b9ab247ddf1d862983328af3464691
https://doi.org/10.1007/978-3-030-05597-4_6
https://doi.org/10.1007/978-3-030-05597-4_6
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter, we consider the Poisson–Hermite semigroup, which is the semigroup subordinated to the Ornstein–Uhlenbeck semigroup. This is analogous to the classical case in which the Poisson semigroup is obtained by subordination of the heat s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::05d4b7bfe9cd5c6cec5758a04c1b2849
https://doi.org/10.1007/978-3-030-05597-4_3
https://doi.org/10.1007/978-3-030-05597-4_3
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ce80db6c8c1a046d20968a94965efc91
https://doi.org/10.1007/978-3-030-05597-4_9
https://doi.org/10.1007/978-3-030-05597-4_9
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b45f5ed34f1fe15c170440921aaf03f8
https://doi.org/10.1007/978-3-030-05597-4_10
https://doi.org/10.1007/978-3-030-05597-4_10
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter we study the Gaussian measure in \(\mathbb {R}^d\) for d ≥ 1 and several of its properties. Then, we study the problem of the Gaussian measure for balls in \(\mathbb {R}^d,\) which is crucial in Chapter 4 for studying the associated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::40dae33ab9066b28cd39cc813505122e
https://doi.org/10.1007/978-3-030-05597-4_1
https://doi.org/10.1007/978-3-030-05597-4_1
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
Littlewood–Paley–Stein theory is an important area in harmonic analysis, with a great number of applications, as Littlewood–Paley functions are very useful in the proof of the Lp boundedness of singular integral operators, and in the characteri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ff241330fc8a1e170d75472b25b9012b
https://doi.org/10.1007/978-3-030-05597-4_5
https://doi.org/10.1007/978-3-030-05597-4_5
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b5c892a2db0512c91b14e70533374a0
https://doi.org/10.1007/978-3-030-05597-4
https://doi.org/10.1007/978-3-030-05597-4
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter, we study several important operators in Gaussian harmonic analysis. First, we consider Riesz and Bessel potentials with respect to the Ornstein–Uhlenbeck operator L, and then, Riesz and Bessel fractional derivatives. We study their
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a959fdc167b937f035b9b3ae46f98557
https://doi.org/10.1007/978-3-030-05597-4_8
https://doi.org/10.1007/978-3-030-05597-4_8