Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Wilfredo Urbina"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 27128-27150 (2023)
In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with
Externí odkaz:
https://doaj.org/article/6cd010aa8cf6440e841d8f62ebe681e5
Publikováno v:
Quaestiones Mathematicae. 45:385-407
In this paper we are going to prove that the Hardy-Litllewood maximal operators on variable Lebesgue spaces Lp(·)(µ) with respect to a probability Borel measure µ, are weak type and strong type for...
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
Let $$p\ge 1, \ell \in \mathbb {N}, \alpha ,\beta >-1$$ and $$\varpi =(\omega _0,\omega _1, \ldots , \omega _{\ell -1})\in \mathbb {R}^{\ell }$$ . Given a suitable function f, we define the discrete–continuous Jacobi–Sobolev norm of f as: $$\begi
Publikováno v:
Revista Colombiana de Matemáticas, Volume: 55, Issue: 1, Pages: 21-41, Published: 04 NOV 2021
The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {T t } t≥0 in ℝ d , on Gaussian variable Lebesgue spaces L p(·) (γ d ), under a condition of regularity on p(·) follow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51500abf1162e34fc2387c2d471f7311
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
Publikováno v:
Journal of Stochastic Analysis. 1
Publikováno v:
Quaestiones Mathematicae. 42:1045-1064
In this paper we shall be concerned with Hα summability, for 0 < α ≤ 2 of the Fourier series of arbitrary L1([−π, π]) functions. The methods employed here are a modification of the real variable on...
Autor:
Wilfredo Urbina, Eduard Navas
Publikováno v:
Journal of Function Spaces. 2018:1-29
We develop a transference method to obtain the Lp-continuity of the Gaussian-Littlewood-Paley g-function and the Lp-continuity of the Laguerre-Littlewood-Paley g-function from the Lp-continuity of the Jacobi-Littlewood-Paley g-function, in dimension
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter we are going to define and study the Ornstein–Uhlenbeck operator and the Ornstein–Uhlenbeck semigroup. They are analogous, in the Gaussian harmonic analysis, to the Laplacian and the heat semigroup in the classical case. Then, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d381811313b97f872bf8278527a449b7
https://doi.org/10.1007/978-3-030-05597-4_2
https://doi.org/10.1007/978-3-030-05597-4_2
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter, we study spectral multiplier operators for Hermite polynomial expansions. First, we consider Meyer’s multiplier theorem, which is one of the most basic and most useful results for Hermite expansions. Then, we consider spectral mult
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::94b9ab247ddf1d862983328af3464691
https://doi.org/10.1007/978-3-030-05597-4_6
https://doi.org/10.1007/978-3-030-05597-4_6
Autor:
Wilfredo Urbina-Romero
Publikováno v:
Springer Monographs in Mathematics ISBN: 9783030055967
In this chapter, we consider the Poisson–Hermite semigroup, which is the semigroup subordinated to the Ornstein–Uhlenbeck semigroup. This is analogous to the classical case in which the Poisson semigroup is obtained by subordination of the heat s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::05d4b7bfe9cd5c6cec5758a04c1b2849
https://doi.org/10.1007/978-3-030-05597-4_3
https://doi.org/10.1007/978-3-030-05597-4_3