Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Wilcke, W. X."'
Knowledge graphs enable data scientists to learn end-to-end on heterogeneous knowledge. However, most end-to-end models solely learn from the relational information encoded in graphs' structure: raw values, encoded as literal nodes, are either omitte
Externí odkaz:
http://arxiv.org/abs/2309.01169
End-to-end multimodal learning on knowledge graphs has been left largely unaddressed. Instead, most end-to-end models such as message passing networks learn solely from the relational information encoded in graphs' structure: raw values, or literals,
Externí odkaz:
http://arxiv.org/abs/2003.12383
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Wilcke, W X, de Boer, V, van Harmelen, F A H & de Kleijn, M T M 2016, ' A Deep Neural Network for Link Prediction on Knowledge Graphs ', ICT.OPEN 2016, Amersfoort, Netherlands, 22/03/16-23/03/16 .
Vrije Universiteit Amsterdam
ICT.OPEN 2016
Vrije Universiteit Amsterdam
ICT.OPEN 2016
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ca58a0f2e9f766cd9190a5fa22281427
https://research.vu.nl/ws/files/55125318/WilckeWX_ICTOPEN16.pdf
https://research.vu.nl/ws/files/55125318/WilckeWX_ICTOPEN16.pdf
Publikováno v:
Vrije Universiteit Amsterdam
ICT Open 2018
Wilcke, W X, Bloem, P & de Boer, V 2018, ' The Knowledge Graph for End-to-End Learning on Heterogeneous Knowledge ', ICT Open 2018, Amersfoort, Netherlands, 19/03/18-20/03/18 .
ICT Open 2018
Wilcke, W X, Bloem, P & de Boer, V 2018, ' The Knowledge Graph for End-to-End Learning on Heterogeneous Knowledge ', ICT Open 2018, Amersfoort, Netherlands, 19/03/18-20/03/18 .
In modern machine learning,raw data is the preferred input for our models. Where a decade ago data scientists were still engineering features, manually picking out the details we thought salient, they now prefer the data in their raw form. As long as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1119a581ca37d2b103f003652293df3a
https://research.vu.nl/en/publications/64f02e34-e3a2-4023-8486-b9894c6c4a17
https://research.vu.nl/en/publications/64f02e34-e3a2-4023-8486-b9894c6c4a17
Publikováno v:
Vrije Universiteit Amsterdam
Benelearn 2017
Wilcke, W X, de Boer, V & van Harmelen, F 2017, ' User-Driven Pattern Mining on knowledge graphs: an Archaeological Case Study ', Benelearn 2017, Eindhoven, Netherlands, 9/06/17-10/06/17 .
Benelearn 2017
Wilcke, W X, de Boer, V & van Harmelen, F 2017, ' User-Driven Pattern Mining on knowledge graphs: an Archaeological Case Study ', Benelearn 2017, Eindhoven, Netherlands, 9/06/17-10/06/17 .
In recent years, there has been a growing interest from the Digital Humanities in knowledge graphs as data modelling paradigm. Already, many data sets have been published as such and are available in the Linked Open Data cloud. With it, the nature of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2fd33aeda3cb9e3b216f0d7cb547ab9d
https://research.vu.nl/en/publications/88aee8bf-d116-40cc-aa92-5704a3469fa4
https://research.vu.nl/en/publications/88aee8bf-d116-40cc-aa92-5704a3469fa4
Autor:
Wilcke, W. X., Victor de Boer, Frank van Harmelen, Kleijn, M. T. M., Wansleeben, M., Harry Dimitropoulos, Holly Wright
Publikováno v:
Vrije Universiteit Amsterdam
Recent years have witnessed a growing interest from archaeological communities in Linked Data. ARIADNE, the Advanced Research Infrastructure for Archaeological Data set Networking in Europe, facilitates a central web portal that provides access to ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5fe48fbc77d01b80b26df3875a3ca492
https://research.vu.nl/en/publications/fcb11c81-af89-4034-a33d-5a6d705166b0
https://research.vu.nl/en/publications/fcb11c81-af89-4034-a33d-5a6d705166b0
Publikováno v:
Vrije Universiteit Amsterdam
Recent years have witnessed a growing interest from archaeological communities in Linked Data. ARIADNE, the Advanced Research Infrastructure for Archaeological Data set Networking in Europe, facilitates a central web portal that provides access to ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0fb65ff66a5dc32e87e91aec4b7ae623
https://research.vu.nl/en/publications/dfa31ef6-a2fd-4867-a6b2-7654aabff10c
https://research.vu.nl/en/publications/dfa31ef6-a2fd-4867-a6b2-7654aabff10c
Publikováno v:
Proceedings of the European Conference on Information Systems (ECIS); 2020, p1-16, 16p
Autor:
Wilcke, W.X.
Publikováno v:
Wilcke, W X 2015, ' Learning an Optimized Deep Neural Network for Link Prediction on Knowledge Graphs ', ECML PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, 7/09/15-11/09/15 .
ECML PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Wilcke, W X 2015, Learning an Optimized Deep Neural Network for Link Prediction on Knowledge Graphs . in J Hollmén & P Papapetrou (eds), Proceedings of the ECMLPKDD 2015 Doctoral Consortium . Aalto University, Helsinki, pp. 226-235, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 7/09/15 . < https://aaltodoc.aalto.fi/handle/123456789/18224 >
ECML PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
Wilcke, W X 2015, Learning an Optimized Deep Neural Network for Link Prediction on Knowledge Graphs . in J Hollmén & P Papapetrou (eds), Proceedings of the ECMLPKDD 2015 Doctoral Consortium . Aalto University, Helsinki, pp. 226-235, European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 7/09/15 . < https://aaltodoc.aalto.fi/handle/123456789/18224 >
Recent years have seen the emergence of graph-based Knowl-edge Bases build upon Semantic Web technologies, known as KnowledgeGraphs (KG). Popular examples are DBpedia and GeoNames. The formal system underlying these KGs provides inherent support for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6bda57a32acf907281ba890fdb485e27
https://aaltodoc.aalto.fi/handle/123456789/18224
https://aaltodoc.aalto.fi/handle/123456789/18224