Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Wieder, WR"'
Autor:
Lawrence, DM, Fisher, RA, Koven, CD, Oleson, KW, Swenson, SC, Bonan, G, Collier, N, Ghimire, B, van Kampenhout, L, Kennedy, D, Kluzek, E, Lawrence, PJ, Li, F, Li, H, Lombardozzi, D, Riley, WJ, Sacks, WJ, Shi, M, Vertenstein, M, Wieder, WR, Xu, C, Ali, AA, Badger, AM, Bisht, G, van den Broeke, M, Brunke, MA, Burns, SP, Buzan, J, Clark, M, Craig, A, Dahlin, K, Drewniak, B, Fisher, JB, Flanner, M, Fox, AM, Gentine, P, Hoffman, F, Keppel‐Aleks, G, Knox, R, Kumar, S, Lenaerts, J, Leung, LR, Lipscomb, WH, Lu, Y, Pandey, A, Pelletier, JD, Perket, J, Randerson, JT, Ricciuto, DM, Sanderson, BM, Slater, A, Subin, ZM, Tang, J, Thomas, RQ, Val Martin, M, Zeng, X
The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=core_ac_uk__::7de9b32323f22d38a6962c1b31d78544
https://eprints.whiterose.ac.uk/154850/1/Lawrence_et_al-2020-Journal_of_Advances_in_Modeling_Earth_Systems.pdf
https://eprints.whiterose.ac.uk/154850/1/Lawrence_et_al-2020-Journal_of_Advances_in_Modeling_Earth_Systems.pdf
Publikováno v:
Geophysical Research Letters, vol 46, iss 24
Key uncertainties in terrestrial carbon cycle projections revolve around the timing, direction, and magnitude of the carbon cycle feedback to climate change. This is especially true in carbon-rich Arctic ecosystems, where permafrost soils contain rou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::108808f7ead3444b22357c5582d1fd0f
https://escholarship.org/uc/item/880811xj
https://escholarship.org/uc/item/880811xj
Autor:
Schadel, C, Koven, CD, Lawrence, DM, Celis, G, Garnello, AJ, Hutchings, J, Mauritz, M, Natali, SM, Pegoraro, E, Rodenhizer, H, Salmon, VG, Taylor, MA, Webb, EE, Wieder, WR, Schuur, EAG
Publikováno v:
Environmental Research Letters, vol 13, iss 10
Schadel, C; Koven, CD; Lawrence, DM; Celis, G; Garnello, AJ; Hutchings, J; et al.(2018). Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environmental Research Letters, 13(10), 105002-105002. doi: 10.1088/1748-9326/aae0ff. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/1wd1b71d
Schadel, C; Koven, CD; Lawrence, DM; Celis, G; Garnello, AJ; Hutchings, J; et al.(2018). Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environmental Research Letters, 13(10), 105002-105002. doi: 10.1088/1748-9326/aae0ff. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/1wd1b71d
© 2018 The Author(s). Published by IOP Publishing Ltd. In the last few decades, temperatures in the Arctic have increased twice as much as the rest of the globe. As permafrost thaws in response to this warming, large amounts of soil organic matter m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::12f0b8c67d1e4e58db0190ecd7ee8d6b
https://escholarship.org/uc/item/1wd1b71d
https://escholarship.org/uc/item/1wd1b71d
Publikováno v:
Global change biology, vol 24, iss 4
Wieder, WR; Hartman, MD; Sulman, BN; Wang, YP; Koven, CD; & Bonan, GB. (2018). Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology, 24(4), 1563-1579. doi: 10.1111/gcb.13979. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/79d8n030
Wieder, WR; Hartman, MD; Sulman, BN; Wang, YP; Koven, CD; & Bonan, GB. (2018). Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models. Global Change Biology, 24(4), 1563-1579. doi: 10.1111/gcb.13979. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/79d8n030
© 2017 John Wiley & Sons Ltd Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and imp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::03d861b21b8146df9e2ceec44edf1d36
https://escholarship.org/uc/item/79d8n030
https://escholarship.org/uc/item/79d8n030
Publikováno v:
Nature Climate Change, vol 7, iss 11
Koven, CD; Hugelius, G; Lawrence, DM; & Wieder, WR. (2017). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7(11), 817-822. doi: 10.1038/nclimate3421. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/7q68v57x
Koven, CD; Hugelius, G; Lawrence, DM; & Wieder, WR. (2017). Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change, 7(11), 817-822. doi: 10.1038/nclimate3421. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/7q68v57x
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately rep
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::137c533774117fbd7785f0dadd57186f
https://escholarship.org/uc/item/7q68v57x
https://escholarship.org/uc/item/7q68v57x
Autor:
Crowther, TW, Todd-Brown, KEO, Rowe, CW, Wieder, WR, Carey, JC, Machmuller, MB, Snoek, BL, Fang, S, Zhou, G, Allison, SD, Blair, JM, Bridgham, SD, Burton, AJ, Carrillo, Y, Reich, PB, Clark, JS, Classen, AT, Dijkstra, FA, Elberling, B, Emmett, BA, Estiarte, M, Frey, SD, Guo, J, Harte, J, Jiang, L, Johnson, BR, Kröel-Dulay, G, Larsen, KS, Laudon, H, Lavallee, JM, Luo, Y, Lupascu, M, Ma, LN, Marhan, S, Michelsen, A, Mohan, J, Niu, S, Pendall, E, Peñuelas, J, Pfeifer-Meister, L, Poll, C, Reinsch, S, Reynolds, LL, Schmidt, IK, Sistla, S, Sokol, NW, Templer, PH, Treseder, KK, Welker, JM, Bradford, MA
Publikováno v:
Nature, vol 540, iss 7631
The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______325::5c31bad5037b4fa62a013b4d762279fe
https://escholarship.org/uc/item/2jd320d9
https://escholarship.org/uc/item/2jd320d9
Autor:
Wieder, WR, Allison, SD, Davidson, EA, Georgiou, K, Hararuk, O, He, Y, Hopkins, F, Luo, Y, Smith, MJ, Sulman, B, Todd-Brown, K, Wang, YP, Xia, J, Xu, X
Publikováno v:
Global Biogeochemical Cycles, vol 29, iss 10
Wieder, WR; Allison, SD; Davidson, EA; Georgiou, K; Hararuk, O; He, Y; et al.(2015). Explicitly representing soil microbial processes in Earth system models. Global Biogeochemical Cycles, 29(10), 1782-1800. doi: 10.1002/2015GB005188. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/19d1n3jt
Wieder, WR; Allison, SD; Davidson, EA; Georgiou, K; Hararuk, O; He, Y; et al.(2015). Explicitly representing soil microbial processes in Earth system models. Global Biogeochemical Cycles, 29(10), 1782-1800. doi: 10.1002/2015GB005188. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/19d1n3jt
©2015. American Geophysical Union. All Rights Reserved. Microbes influence soil organic matter decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their inte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1aa430b2c3cdd3d8c197135478432d81
https://escholarship.org/uc/item/19d1n3jt
https://escholarship.org/uc/item/19d1n3jt
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kim IW; Center for Climate Physics, Institute for Basic Science, Busan, South Korea. iwkimi@pusan.ac.kr.; Pusan National University, Busan, South Korea. iwkimi@pusan.ac.kr., Timmermann A; Center for Climate Physics, Institute for Basic Science, Busan, South Korea.; Pusan National University, Busan, South Korea., Kim JE; Center for Climate Physics, Institute for Basic Science, Busan, South Korea.; Pusan National University, Busan, South Korea., Rodgers KB; WPI-Advanced Institute for Marine Ecosystem Change, Tohoku University, Sendai, Japan., Lee SS; Center for Climate Physics, Institute for Basic Science, Busan, South Korea.; Pusan National University, Busan, South Korea., Lee H; Norwegian University of Science and Technology, Trondheim, Norway., Wieder WR; Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA.; Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
Publikováno v:
Nature communications [Nat Commun] 2024 Sep 24; Vol. 15 (1), pp. 7868. Date of Electronic Publication: 2024 Sep 24.
Autor:
Lennon JT; Department of Biology, Indiana University, Bloomington, Indiana, USA., Abramoff RZ; Lawrence Berkeley National Laboratory, Berkeley, California, USA.; Ronin Institute, Montclair, New Jersey, USA., Allison SD; Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA.; Department of Earth System Science, University of California Irvine, Irvine, California, USA., Burckhardt RM; American Society for Microbiology, Washington, DC, USA., DeAngelis KM; Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA., Dunne JP; NOAA/OAR Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA., Frey SD; Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA., Friedlingstein P; College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, United Kingdom., Hawkes CV; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA., Hungate BA; Department of Biological Sciences, Center for Ecosystem Science, Northern Arizona University, Flagstaff, Arizona, USA., Khurana S; Department of Physical Geography, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden., Kivlin SN; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA., Levine NM; Department of Biological Sciences, University of Southern California, Los Angeles, California, USA., Manzoni S; Department of Physical Geography, Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden., Martiny AC; Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA., Martiny JBH; Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA., Nguyen NK; American Society for Microbiology, Washington, DC, USA., Rawat M; National Science Foundation, Washington, DC, USA., Talmy D; Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA., Todd-Brown K; Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA., Vogt M; Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland., Wieder WR; National Center for Atmospheric Research, Boulder, Colorado, USA.; Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA., Zakem EJ; Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA.
Publikováno v:
MBio [mBio] 2024 May 08; Vol. 15 (5), pp. e0045524. Date of Electronic Publication: 2024 Mar 25.