Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Wiedemann algorithm"'
Autor:
Villard, Gilles
Publikováno v:
International Conference on Applications of Computer Algebra (ACA) 2021
International Conference on Applications of Computer Algebra (ACA) 2021, Jul 2021, Virtual, online, Canada
International Conference on Applications of Computer Algebra (ACA) 2021, Jul 2021, Virtual, online, Canada
International audience; Coppersmith has introduced a block version of Wiedemann's algorithm. The method allows to obtain algorithms with best known complexity bounds for various matrix and polynomial problems. We can mention for example: Determinant
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8d48d6f118c215a3b72d2bbd1787c88d
https://hal.science/hal-03730740
https://hal.science/hal-03730740
Publikováno v:
ACM Communications in Computer Algebra. 52:123-125
Overview. Computing the Gröbner basis of an ideal with respect to a term ordering is an essential step in solving systems of polynomials; in what follows, we restrict our attention to systems with finitely many solutions. Certain term orderings, suc
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jean-Charles Faugère, Chenqi Mou
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, Elsevier, 2017, 80 (3), pp.538-569. ⟨10.1016/j.jsc.2016.07.025⟩
Journal of Symbolic Computation, 2017, 80 (3), pp.538-569. ⟨10.1016/j.jsc.2016.07.025⟩
Journal of Symbolic Computation, Elsevier, 2017, 80 (3), pp.538-569. ⟨10.1016/j.jsc.2016.07.025⟩
Journal of Symbolic Computation, 2017, 80 (3), pp.538-569. ⟨10.1016/j.jsc.2016.07.025⟩
Given a zero-dimensional ideal I in K[x1,...,xn] of degree D, the transformation of the ordering of its Groebner basis from DRL to LEX is a key step in polynomial system solving and turns out to be the bottleneck of the whole solving process. Thus it
Publikováno v:
Information Sciences. 387:254-265
RSA algorithm is one of the most popular and secure public key cryptographic algorithms. To guarantee data security in cloud computing, RSA algorithm has been widely used in cloud. The security of RSA algorithm lies in the difficulty of factoring lar
Autor:
Tong Zhou, Jingfei Jiang
Publikováno v:
The Journal of Supercomputing. 72:4181-4203
Solving large-scale sparse linear systems over GF(2) plays a key role in fluid mechanics, simulation and design of materials, petroleum seismic data processing, numerical weather prediction, computational electromagnetics, and numerical simulation of
Publikováno v:
ACM Communications in Computer Algebra. 50:173-175
We determine the probability, structure dependent, that the block Wiedemann algorithm correctly computes leading invariant factors. This leads to a tight lower bound for the probability, structure independent. We show, using block size slightly large
Autor:
Canteaut, Anne, Effinger, Gove, Huczynska, Sophie, Panario, Daniel, Storme, Leo, Joux, Antoine, Pierrot, Cécile
Publikováno v:
Contemporary Developments in Finite Fields and Applications
Contemporary Developments in Finite Fields and Applications, 2016, 978-981-4719-27-8 ⟨10.1142/9789814719261_0008⟩
Contemporary Developments in Finite Fields and Applications, 2016, 978-981-4719-27-8 ⟨10.1142/9789814719261_0008⟩
International audience; In this article, we propose a method to perform linear algebra on a matrix with nearly sparse properties. More precisely, although we require the main part of the matrix to be sparse, we allow some dense columns with possibly
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57f7a281d9e5b7f82a1e4f32ed6e4da2
https://doi.org/10.1142/9789814719261_0008
https://doi.org/10.1142/9789814719261_0008
Publikováno v:
Concurrency and Computation: Practice and Experience. 25:586-603
SUMMARY The block Wiedemann (BW) algorithm is frequently used to solve sparse linear systems over GF(2). Iterative sparse matrix–vector multiplication is the most time-consuming operation. The necessity to accelerate this step is motivated by the a