Zobrazeno 1 - 10
of 399
pro vyhledávání: '"Wick, Brett D."'
Paraproducts are a special subclass of the multilinear Calder\'on-Zygmund operators, and their Lebesgue space estimates in the full multilinear range are characterized by the $\mathrm{BMO}$ norm of the symbol. In this note, we characterize the Sobole
Externí odkaz:
http://arxiv.org/abs/2406.13174
Part of the intrinsic structure of singular integrals in the Bessel setting is captured by Muckenhoupt-type weights. Anderson--Kerman showed that the Bessel Riesz transform is bounded on weighted $L^p_w$ if and only if $w$ is in the class $A_{p,\lamb
Externí odkaz:
http://arxiv.org/abs/2405.01081
The path-integral technique in quantum mechanics provides an intuitive framework for comprehending particle propagation and scattering. Calculating the propagator for the Aharonov-Bohm potential fits into the range of potentials in multiply-connected
Externí odkaz:
http://arxiv.org/abs/2404.17828
We characterize the Schatten class $S^p$ of the commutator of Riesz transforms $[b,R_j]$ in $\mathbb R^n$ ($j=1,\ldots, n$) in the two weight setting for $n< p<\infty$, by introducing the condition that the symbol $b$ being in Besov spaces associated
Externí odkaz:
http://arxiv.org/abs/2404.00329
We prove a wavelet $T(1)$ theorem for compactness of multilinear Calder\'{o}n-Zygmund (CZ) operators. Our approach characterizes compactness in terms of testing conditions and yields a representation theorem for compact CZ forms in terms of wavelet a
Externí odkaz:
http://arxiv.org/abs/2312.09185
We quantify the Sobolev space norm of the Beltrami resolvent $(I- \mu \mathcal S)^{-1}$, where $\mathcal S$ is the Beurling-Ahlfors transform, in terms of the corresponding Sobolev space norm of the dilatation $\mu$ in the critical and supercrticial
Externí odkaz:
http://arxiv.org/abs/2310.14089
We first study the Lipschitz spaces $\Lambda_{d}^\beta$ associated with the Dunkl metric, $\beta\in(0,1)$, and prove that it is a proper subspace of the classical Lipschitz spaces $\Lambda^\beta$ on $\mathbb R^N$, as the Dunkl metric and the Euclidea
Externí odkaz:
http://arxiv.org/abs/2307.00502
Given a uniform domain $\Omega \subset {\mathbb R}^d$, we resolve each element of a suitably defined class of Calder\`on-Zygmund (CZ) singular integrals on $\Omega$ as the linear combination of Triebel wavelet operators and paraproduct terms. Our res
Externí odkaz:
http://arxiv.org/abs/2304.13909
Let $ \Pi _{b}$ be a bounded $n$ parameter paraproduct with symbol $b$. We demonstrate that this operator is in the Schatten class $\mathbb S_ p$, $0
Externí odkaz:
http://arxiv.org/abs/2303.15657