Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Whitmeyer, Michael"'
Autor:
Beame, Paul, Whitmeyer, Michael
We prove an $\Omega(n^{1-1/k} \log k \ /2^k)$ lower bound on the $k$-party number-in-hand communication complexity of collision-finding. This implies a $2^{n^{1-o(1)}}$ lower bound on the size of tree-like cutting-planes proofs of the bit pigeonhole
Externí odkaz:
http://arxiv.org/abs/2411.07400
We consider the time and space required for quantum computers to solve a wide variety of problems involving matrices, many of which have only been analyzed classically in prior work. Our main results show that for a range of linear algebra problems -
Externí odkaz:
http://arxiv.org/abs/2401.05321
Autor:
Iyer, Vishnu, Jain, Siddhartha, Kovacs-Deak, Matt, Kumar, Vinayak M., Schaeffer, Luke, Wang, Daochen, Whitmeyer, Michael
We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier d
Externí odkaz:
http://arxiv.org/abs/2310.08004
Autor:
Iyer, Siddharth, Whitmeyer, Michael
Given a function $f$ on $\mathbb{F}_2^n$, we study the following problem. What is the largest affine subspace $\mathcal{U}$ such that when restricted to $\mathcal{U}$, all the non-trivial Fourier coefficients of $f$ are very small? For the natural cl
Externí odkaz:
http://arxiv.org/abs/2207.13312
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the \emph{tolerant testing} of juntas. Given black-box access to a Boolean function $f:\{\pm1\}^{n} \to \{\pm1\}$, we give a $poly(k, \frac{1}{\varep
Externí odkaz:
http://arxiv.org/abs/2106.00287
Autor:
Park, Saehong, Pozzi, Andrea, Whitmeyer, Michael, Perez, Hector, Joe, Won Tae, Raimondo, Davide M, Moura, Scott
One of the most crucial challenges faced by the Li-ion battery community concerns the search for the minimum time charging without irreversibly damaging the cells. This can fall into solving large-scale nonlinear optimal control problems according to
Externí odkaz:
http://arxiv.org/abs/2002.02060
Autor:
Whitmeyer, Michael, Liu, Jonathan
This report will be a literature review on a result in algorithmic discrepancy theory. We will begin by providing a quick overview on discrepancy theory and some major results in the field, and then focus on an important result by Shachar Lovett and
Externí odkaz:
http://arxiv.org/abs/1911.07417
Autor:
Paradis, Samuel, Whitmeyer, Michael
We use data on 124 batteries released by Stanford University to first try to solve the binary classification problem of determining if a battery is "good" or "bad" given only the first 5 cycles of data (i.e., will it last longer than a certain thresh
Externí odkaz:
http://arxiv.org/abs/1910.01347
Autor:
Iyer, Siddharth, Whitmeyer, Michael
Given a function $f$ on $\mathbb{F}_2^n$, we study the following problem. What is the largest affine subspace $\mathcal{U}$ such that when restricted to $\mathcal{U}$, all the non-trivial Fourier coefficients of $f$ are very small? For the natural cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d559f45dfcd9235744e9024146287ed6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.