Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Weyl invariants"'
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 28, Iss 1, Pp 77-86 (2022)
Purpose – The purpose of this paper is to study the Bertotti–Kasner space-time and its geometric properties. Design/methodology/approach – This paper is based on the features of λ-tensor and the technique of six-dimensional formalism introduce
Externí odkaz:
https://doaj.org/article/a1391113aec44e428664789d14232970
Autor:
Console, Sergio, Olmos, Carlos
Publikováno v:
Proceedings of the American Mathematical Society, 2009 Mar 01. 137(3), 1069-1072.
Externí odkaz:
https://www.jstor.org/stable/20535833
Autor:
Console, Sergio, Olmos, Carlos
Publikováno v:
Transactions of the American Mathematical Society, 2008 Feb 01. 360(2), 629-641.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-07-04529-1
Autor:
Chaves Ramirez, Sergio
Publikováno v:
Electronic Thesis and Dissertation Repository
The Borel equivariant cohomology is an algebraic invariant of topological spaces with actions of a compact group which inherits a canonical module structure over the cohomology of the classifying space of the acting group. The study of syzygies in eq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1548::5444b1ceb0dd35a45c72fc70edb1a638
https://ir.lib.uwo.ca/etd/7049
https://ir.lib.uwo.ca/etd/7049
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexander V. Turbiner
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 003 (2013)
A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals
Externí odkaz:
https://doaj.org/article/adb748650eb646198c284a701e8234d8
Autor:
Alexander V. Turbiner
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 7, p 071 (2011)
A brief and incomplete review of known integrable and (quasi)-exactly-solvable quantum models with rational (meromorphic in Cartesian coordinates) potentials is given. All of them are characterized by (i) a discrete symmetry of the Hamiltonian, (ii)
Externí odkaz:
https://doaj.org/article/a5fb1de7b01f4b9c870357c1a96f9a75
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexander V. Turbiner
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 003 (2013)
A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b0440f8c1f23c633024b8c0e69f6c75
http://arxiv.org/abs/1210.4515
http://arxiv.org/abs/1210.4515
Autor:
Sergio Console, Carlos Olmos
We prove that the cohomogeneity of a Riemannian manifold coincides locally with the codimension of the foliation by regular level sets of the scalar Weyl invariants.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c210335b976ea2d5da5b69ef23eef63
http://hdl.handle.net/2318/25058
http://hdl.handle.net/2318/25058