Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Weronika, Patena"'
Autor:
Moshe Kafri, Weronika Patena, Lance Martin, Lianyong Wang, Gillian Gomer, Arthur K Sirkejyan, Audrey Goh, Alexandra T. Wilson, Sophia E Gavrilenko, Michal Breker, Asael Roichman, Claire D. McWhite, Joshua D. Rabinowitz, Frederick R Cross, Martin Wühr, Martin C. Jonikas
SUMMARYPhotosynthesis is central to food production and the Earth’s biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic algaChlamydomonas reinhardtii, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::24e78cc922425ab981fb0a866929793d
https://doi.org/10.1101/2022.11.12.515357
https://doi.org/10.1101/2022.11.12.515357
Autor:
Lianyong Wang, Weronika Patena, Kelly A. Van Baalen, Yihua Xie, Emily R. Singer, Sophia Gavrilenko, Michelle Warren-Williams, Linqu Han, Henry R. Harrigan, Vivian Chen, Vinh T.N.P. Ton, Saw Kyin, Henry H. Shwe, Matthew H. Cahn, Alexandra T. Wilson, Jianping Hu, Danny J. Schnell, Claire D. McWhite, Martin Jonikas
SummaryChloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the loc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71a4b15df616257d1c043e8d9b1dbb3d
https://doi.org/10.1101/2022.05.31.493820
https://doi.org/10.1101/2022.05.31.493820
Autor:
Friedrich Fauser, Josep Vilarrasa-Blasi, Masayuki Onishi, Silvia Ramundo, Weronika Patena, Matthew Millican, Jacqueline Osaki, Charlotte Philp, Matthew Nemeth, Patrice A. Salomé, Xiaobo Li, Setsuko Wakao, Rick G. Kim, Yuval Kaye, Arthur R. Grossman, Krishna K. Niyogi, Sabeeha S. Merchant, Sean R. Cutler, Peter Walter, José R. Dinneny, Martin C. Jonikas, Robert E. Jinkerson
Publikováno v:
Nature genetics, vol 54, iss 5
Most genes in photosynthetic organisms remain functionally uncharacterized. Here, using a barcoded mutant library of the model eukaryotic alga Chlamydomonas reinhardtii, we determined the phenotypes of more than 58,000 mutants under more than 121 dif
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42ff4e11c3cfb3b17836def5ac18e4c6
https://escholarship.org/uc/item/2cw7p7d7
https://escholarship.org/uc/item/2cw7p7d7
Autor:
Alan K. Itakura, Leif J. Pallesen, Lianyong Wang, Oliver D Caspari, Robyn Roth, Weronika Patena, Alistair J. McCormick, Howard Griffiths, Kher Xing Chan, Ursula Goodenough, Nicky Atkinson, Martin C. Jonikas, Gregory Reeves
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America
Itakura, A K, Chan, K X, Atkinson, N, Pallesen, L, Wang, L, Reeves, G, Patena, W, Caspari, O, Roth, R, Goodenough, U, McCormick, A J, Griffiths, H & Jonikas, M C 2019, ' A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii ', Proceedings of the National Academy of Sciences, vol. 116, no. 37, pp. 18445-18454 . https://doi.org/10.1073/pnas.1904587116
Itakura, A K, Chan, K X, Atkinson, N, Pallesen, L, Wang, L, Reeves, G, Patena, W, Caspari, O, Roth, R, Goodenough, U, McCormick, A J, Griffiths, H & Jonikas, M C 2019, ' A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii ', Proceedings of the National Academy of Sciences, vol. 116, no. 37, pp. 18445-18454 . https://doi.org/10.1073/pnas.1904587116
Significance Many cellular structures are assembled via phase separation, forming liquid-like droplets in a manner analogous to oil in water. How can the cell control whether there is 1 droplet or many? Here, we provide insights into this question by
Autor:
Martin C. Jonikas, Friedrich Fauser, Paul A. Lefebvre, Nina Ivanova, Josep Vilarrasa-Blasi, Matthew Laudon, Tharan Srikumar, Xiaobo Li, Audrey Goh, Sean R. Blum, Ru Zhang, Rebecca Yue, Arthur R. Grossman, Jacob M. Robertson, Silvia Ramundo, Weronika Patena, Tyler M. Wittkopp, Robert E. Jinkerson, Shai Saroussi, Moritz T. Meyer
Publikováno v:
Nature genetics
Photosynthetic organisms provide food and energy for nearly all life on Earth, yet half of their protein-coding genes remain uncharacterized1,2. Characterization of these genes could be greatly accelerated by new genetic resources for unicellular org
Autor:
Arthur R. Grossman, Nemeth M, Salomé Pa, Silvia Ramundo, Sean R. Cutler, Rick G. Kim, Weronika Patena, Philp C, Krishna K. Niyogi, Dinneny, Friedrich Fauser, Josep Vilarrasa-Blasi, Sabeeha S. Merchant, Masayuki Onishi, Setsuko Wakao, Xiaoxiao Li, Osaki J, Millican M, Robert E. Jinkerson, Peter Walter, Martin C. Jonikas, Kaye Y
Photosynthetic organisms are essential for human life, yet most of their genes remain functionally uncharacterized. Single-celled photosynthetic model systems have the potential to accelerate our ability to connect genes to functions. Here, using a b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c6169bda405a0f900f9e5dafdc47211a
https://doi.org/10.1101/2020.12.11.420950
https://doi.org/10.1101/2020.12.11.420950
Autor:
Alan K. Itakura, Lianyong Wang, Shan He, Tom Z. Emrich-Mills, Chun S. Lau, Weronika Patena, Luke C. M. Mackinder, Moritz T. Meyer, Martin C. Jonikas, Gary Yates
Publikováno v:
Science Advances. 6
Approximately one-third of the Earth's photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the CO2-fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid and how the organelle's subcompartments-membran
Autor:
Chun S. Lau, Alan K. Itakura, Lianyong Wang, Weronika Patena, Gary Yates, Martin C. Jonikas, Tom Z. Emrich-Mills, Luke C. M. Mackinder, Moritz T. Meyer, Shan He
Approximately one-third of the Earth’s photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the CO2-fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid, and how the organelle’s sub-compartments -
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c643e3596077e6b2e5928dca64f1f1f7
https://doi.org/10.1101/2020.08.16.252858
https://doi.org/10.1101/2020.08.16.252858
Autor:
Weronika Patena, Tobias Wunder, Hui-Ting Chou, Sarah A. Port, Nicky Atkinson, Philip D. Jeffrey, Vivian K. Chen, Moritz T. Meyer, Doreen Matthies, Alistair J. McCormick, Oliver Mueller-Cajar, Zhiheng Yu, Shan He, Benjamin D. Engel, Guanhua He, Martin C. Jonikas, Frederick M. Hughson, Antonio Martinez-Sanchez
Approximately one-third of global CO2 fixation occurs in a phase separated algal organelle called the pyrenoid. Existing data suggest that the pyrenoid forms by the phase-separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a2c38c9ad89d939b21cde742e50fc274
https://doi.org/10.1101/2020.08.16.252809
https://doi.org/10.1101/2020.08.16.252809
Autor:
Moritz T, Meyer, Alan K, Itakura, Weronika, Patena, Lianyong, Wang, Shan, He, Tom, Emrich-Mills, Chun S, Lau, Gary, Yates, Luke C M, Mackinder, Martin C, Jonikas
Publikováno v:
Science Advances
A protein motif mediates targeting of proteins to the pyrenoid and appears to link the pyrenoid’s three subcompartments.
Approximately one-third of the Earth’s photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the
Approximately one-third of the Earth’s photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the