Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Werner Ballmann"'
Publikováno v:
International Journal of Mathematics
We discuss the behaviour of the bottom of the spectrum of scalar Schr\"odinger operators under Riemannian coverings of orbifolds. We apply our results to geometrically finite and to conformally compact orbifolds.
Comment: 30 pages
Comment: 30 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d513031a0639f55efa1328b4e57e7d0d
https://hdl.handle.net/21.11116/0000-0009-A044-521.11116/0000-0009-A046-321.11116/0000-0009-A047-2
https://hdl.handle.net/21.11116/0000-0009-A044-521.11116/0000-0009-A046-321.11116/0000-0009-A047-2
Publikováno v:
Geometric Analysis
Progress in Mathematics
Geometric Analysis ISBN: 9783030349523
Progress in Mathematics
Geometric Analysis ISBN: 9783030349523
For a Riemannian covering $\pi\colon M_1\to M_0$, the bottoms of the spectra of $M_0$ and $M_1$ coincide if the covering is amenable. The converse implication does not always hold. Assuming completeness and a lower bound on the Ricci curvature, we ob
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e0b7ee7ba9e21901fefc08614bc2153
https://hdl.handle.net/21.11116/0000-0006-81CA-421.11116/0000-0006-81CC-221.11116/0000-0006-81CD-1
https://hdl.handle.net/21.11116/0000-0006-81CA-421.11116/0000-0006-81CC-221.11116/0000-0006-81CD-1
Publikováno v:
Notices of the International Congress of Chinese Mathematicians
We discuss our recent work on small eigenvalues of surfaces. As an introduction, we present and extend some of the by now classical work of Buser and Randol and explain novel ideas from articles of S\'evennec, Otal, and Otal-Rosas which are of import
Publikováno v:
Geometric and Functional Analysis
In our previous work we introduced, for a Riemannian surface $S$, the quantity $ \Lambda(S):=\inf_F\lambda_0(F)$, where $\lambda_0(F)$ denotes the first Dirichlet eigenvalue of $F$ and the infimum is taken over all compact subsurfaces $F$ of $S$ with
Publikováno v:
Differential geometry, Calabi-Yau theory, and general relativity
Surveys in Differential Geometry
Surveys in Differential Geometry
We discuss the behaviour of the bottom of the spectrum of scalar Schr\"odinger operators under Riemannian coverings.
Comment: 29 pages
Comment: 29 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1723510f96983a0446ccf9115e084de
http://arxiv.org/abs/1911.04371
http://arxiv.org/abs/1911.04371
Publikováno v:
L'Enseignement Mathématique
For covering spaces and properly discontinuous actions with compatible diffusion processes, we discuss Lyons-Sullivan discretizations of the processes and the associated function theory.
Comment: 27 pages
Comment: 27 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eb57dce642473cef3600ba9372401861
Autor:
Werner Ballmann
Publikováno v:
Introduction to Geometry and Topology ISBN: 9783034809825
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1ee9deef12c37aefcc26f2aff448bb78
https://doi.org/10.1007/978-3-0348-0983-2_2
https://doi.org/10.1007/978-3-0348-0983-2_2
Autor:
Werner Ballmann
Publikováno v:
Introduction to Geometry and Topology ISBN: 9783034809825
Differential forms play a role in various realms of mathematics. Here, we work mainly from the perspective of algebraic topology, namely, we work with de Rham cohomology.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::29cc378539238704fed42a265327363e
https://doi.org/10.1007/978-3-0348-0983-2_3
https://doi.org/10.1007/978-3-0348-0983-2_3
Autor:
Werner Ballmann
Publikováno v:
Introduction to Geometry and Topology ISBN: 9783034809825
In this chapter we will discuss the geometry of submanifolds of Euclidean spaces. We assume that the reader is familiar with the fundamentals of Euclidean geometry, that is, the geometry of \(\mathbb {R}^m\) equipped with the Euclidean scalar product
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::399cfc633801de5b0cd5177d8c86cbbc
https://doi.org/10.1007/978-3-0348-0983-2_4
https://doi.org/10.1007/978-3-0348-0983-2_4
Autor:
Werner Ballmann
Publikováno v:
Mathematik Kompakt ISBN: 9783034809856
Einführung in die Geometrie und Topologie
Einführung in die Geometrie und Topologie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b56fc0d121d51fa31644b41e4bb7585e
https://doi.org/10.1007/978-3-0348-0986-3
https://doi.org/10.1007/978-3-0348-0986-3