Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Wenston J.T. Zang"'
Autor:
Wenston J.T. Zang, Huan Xiong
Publikováno v:
Science in China Series A: Mathematics
Science in China Series A: Mathematics, Springer Verlag, In press, ⟨10.1007/s11425-018-9500-x⟩
Science in China Series A: Mathematics, Springer Verlag, In press, ⟨10.1007/s11425-018-9500-x⟩
Amdeberhan's conjectures on the enumeration, the average size, and the largest size of $(n,n+1)$-core partitions with distinct parts have motivated many research on this topic. Recently, Straub and Nath-Sellers obtained formulas for the numbers of $(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26660c887516bf70e67ba4833f57f90f
https://hal.archives-ouvertes.fr/hal-02552373
https://hal.archives-ouvertes.fr/hal-02552373
Publikováno v:
Discrete Mathematics. 344:112556
Andrews, Lewis and Lovejoy introduced the partition function $PD(n)$ as the number of partitions of $n$ with designated summands. In a recent work, Lin studied a partition function $PD_{t}(n)$ which counts the number of tagged parts over all the part
Autor:
Wenston J.T. Zang, Kathy Q. Ji
The main objective of this paper is to investigate the distribution of the Andrews-Garvan-Dyson crank of a partition. Let $M(m,n)$ denote the number of partitions of $n$ with the Andrews-Garvan-Dyson crank $m$, we show that the sequence \break $\{M(m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38e9c5250ef76342f0d8b67952187fbc
http://arxiv.org/abs/1811.07321
http://arxiv.org/abs/1811.07321
Autor:
Wenston J.T. Zang, Huan Xiong
The rank of partitions play an important role in the combinatorial interpretations of several Ramanujan's famous congruence formulas. In 2005 and 2008, the $D$-rank and $M_2$-rank of an overpartition were introduced by Lovejoy, respectively. Let $\ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d2f8547e3d41136854856f4769b9aaa