Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Wenston J. T. Zang"'
Publikováno v:
European Journal of Combinatorics. 51:255-267
Recently, Andrews and Merca considered the truncated version of Euler's pentagonal number theorem and obtained a non-negative result on the coefficients of this truncated series. Guo and Zeng showed the coefficients of two truncated Gauss' identities
Publikováno v:
Advances in Mathematics. 270:60-96
The spt-crank of a vector partition, or an S-partition, was introduced by Andrews, Garvan and Liang. Let N S ( m , n ) denote the net number of S-partitions of n with spt-crank m, that is, the number of S-partitions ( π 1 , π 2 , π 3 ) of n with s
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319683751
Let \(N(\le m,n)\) denote the number of partitions of n with rank not greater than m, and let \(M(\le m,n)\) denote the number of partitions of n with crank not greater than m. Bringmann and Mahlburg observed that \(N(\le m,n)\le M(\le m,n)\le N(\le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::433c775184e02bfeb3b6653b91b73503
https://doi.org/10.1007/978-3-319-68376-8_11
https://doi.org/10.1007/978-3-319-68376-8_11
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2016:231-249
The spt-function $spt(n)$ was introduced by Andrews as the weighted counting of partitions of $n$ with respect to the number of occurrences of the smallest part. Andrews, Garvan and Liang defined the spt-crank of an $S$-partition which leads to combi
Publikováno v:
The Ramanujan Journal. 25:37-47
We use the Algorithm Z on partitions due to Zeilberger, in a variant form, to give a combinatorial proof of Ramanujan’s 1ψ1 summation formula.