Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Wenguo Shen"'
Autor:
Wenguo Shen
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 19546-19556 (2024)
In this paper, we study the following Kirchhoff type problems: $ \left\{ \begin{array}{l} -(\int_{\Omega}|\nabla u|^{2}dx)\Delta u = \lambda u^{3}+g(u, \lambda), \, \, \, \, \, \, \, \, \mathrm{in}\, \, \Omega,\\ u = 0, \, \, \, \, \, \, \, \, \
Externí odkaz:
https://doaj.org/article/f9c87a2e455e42569c8e38f6a399bf29
Autor:
Wenguo Shen
Publikováno v:
AIMS Mathematics, Vol 8, Iss 5, Pp 10453-10467 (2023)
In this work, we study the existence of one-sign solutions without signum condition for the following problem: $ \begin{eqnarray} \left\{ \begin{array}{ll} -\Delta u = \lambda a(x)f(u), \, \, x\in\mathbb{R}^{N}, & {\rm{}}\ u(x)\rightarrow0, \, \,
Externí odkaz:
https://doaj.org/article/95aecc4c34f24d8fada237c054ab6754
Autor:
Wenguo Shen
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2020 (2020)
In this paper, we establish a unilateral global bifurcation result from the interval for the k-Hessian equations with nondifferentiable nonlinearity. By applying the above result, we shall prove the existence of the principal half-eigenvalues for the
Externí odkaz:
https://doaj.org/article/b1fe14adcc05460a971bcf0ebdc9ab29
Autor:
Wenguo Shen
Publikováno v:
Journal of Function Spaces, Vol 2020 (2020)
In this paper, we establish a unilateral global bifurcation result for half-linear perturbation problems with mean curvature operator in Minkowski space. As applications of the abovementioned result, we shall prove the existence of nodal solutions fo
Externí odkaz:
https://doaj.org/article/043c59b447564408980a257978f87dc6
Autor:
Wenguo Shen
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 02,, Pp 1-15 (2018)
In this article, we establish the global bifurcation result from the trivial solutions axis or from infinity for the Monge-Ampere equations with non-differentiable nonlinearity. By applying the above result, we shall determine the interval of $\ga
Externí odkaz:
https://doaj.org/article/27a5849dbbf0404598a6ba8563474384
Autor:
Wenguo Shen
Publikováno v:
Journal of Function Spaces, Vol 2018 (2018)
We shall establish the global bifurcation results from the trivial solutions axis or from infinity for the Monge-Ampère equations: det(D2u)=λm(x)-uN+m(x)f1(x,-u,-u′,λ)+f2(x,-u,-u′,λ), in B, u(x)=0, on ∂B, where D2u=(∂2u/∂xi∂xj) is the
Externí odkaz:
https://doaj.org/article/5ba4e6592d564d11a61296b5c5bf2ffd
Autor:
Wenguo Shen, Tao He
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2016 (2016)
We establish a unilateral global bifurcation result from interval for a class of fourth-order problems with nondifferentiable nonlinearity. By applying the above result, we firstly establish the spectrum for a class of half-linear fourth-order eigenv
Externí odkaz:
https://doaj.org/article/25700ba51d6444a39943d0145a1ff725
Autor:
Wenguo Shen
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2016 (2016)
We study the existence of nodal solutions for the following problem: -x″=αx++βx-+ra(t)f(x), 00 for s≠0, and f0,f∞∉(0,∞), where f0=lim|s|→0f(s)/s and f∞=lim|s|→+∞f(s)/s. We use bifurcation techniques to prove our main results.
Externí odkaz:
https://doaj.org/article/e4f8c2887feb42fc96f64091141fcc10
Autor:
Wenguo Shen
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2016 (2016)
We will establish unilateral global bifurcation result for a class of fourth-order problems. Under some natural hypotheses on perturbation function, we show that (λk,0) is a bifurcation point of the above problems and there are two distinct unbounde
Externí odkaz:
https://doaj.org/article/8bf9ad8b62b0454288ce7f1011463365
Autor:
Wenguo Shen, Tao He
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2014 (2014)
We consider fourth-order boundary value problems u′′′′(t)=λh(t)f(u(t)), 00 for all s>0, and f0=∞, f∞=0, f0=lims→0+f(s)/s, f∞=lims→+∞f(s)/s. We investigate the global structure of positive solutions by using global bifurcation tec
Externí odkaz:
https://doaj.org/article/725afab063404bdfae62e63fbcb7f6bb