Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Wen-Gao Long"'
Autor:
DAN DAI, WEN-GAO LONG
Publikováno v:
SIAM Journal on Mathematical Analysis; 2024, Vol. 56 Issue 4, p5350-5371, 22p
Autor:
Wen-Gao Long, Zhao-Yun Zeng
Publikováno v:
Constructive Approximation. 55:861-889
Publikováno v:
SIAM Journal on Mathematical Analysis; 2023, Vol. 55 Issue 6, p6676-6706, 31p
Autor:
Wen-Gao Long, Yu-Tian Li
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 56:175201
In previous work, Bender and Komijani (2015 \textit{J. Phys. A: Math. Theor.} 48, 475202) studied the first Painlev\'e (PI) equation and showed that the sequence of initial conditions giving rise to separatrix solutions could be asymptotically determ
Publikováno v:
Studies in Applied Mathematics. 144:133-163
As a new application of the method of "uniform asymptotics" proposed by Bassom, Clarkson, Law and McLeod, we provide a simpler and more rigorous proof of the connection formulas of some special solutions of the fifth Painlev\'e equation, which have b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b072f319a95ba80a603e278890f16325
http://arxiv.org/abs/1601.00728
http://arxiv.org/abs/1601.00728
We study the asymptotic expansion for the Landau constants $G_n$, \begin{equation*} \pi G_{n}\sim \ln(16N)+\gamma+\sum^{\infty}_{k=1}\frac{\alpha_k}{N^k} ~~\mbox{as} ~ n\rightarrow\infty, \end{equation*} where $N=n+1$, and $\gamma$ is Euler's constan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24b9715fdc5c4079bc2301d18a3ff50c
http://arxiv.org/abs/1505.00304
http://arxiv.org/abs/1505.00304