Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Wen, Zhiying"'
The topological and metrical equivalence of fractals is an important topic in analysis. In this paper, we use a class of finite state automata, called $\Sigma$-automaton, to construct psuedo-metric spaces, and then apply them to the study of classifi
Externí odkaz:
http://arxiv.org/abs/2112.02322
Autor:
Ni, Tianjia, Wen, Zhiying
Publikováno v:
In Topology and its Applications 1 December 2024 358
In this paper, we introduce a new notion called the \emph{box-counting measure} of a metric space. We show that for a doubling metric space, an Ahlfors regular measure is always a box-counting measure; consequently, if $E$ is a self-similar set satis
Externí odkaz:
http://arxiv.org/abs/2111.00752
Publikováno v:
In International Journal of Biological Macromolecules 1 December 2022 222 Part A:573-586
A connected compact subset $E$ of $\mathbb{R}^N$ is said to be a strict Whitney set if there exists a real-valued $C^1$ function $f$ on $\mathbb{R}^N$ with $\nabla f|_E\equiv 0$ such that $f$ is constant on no non-empty relatively open subsets of $E$
Externí odkaz:
http://arxiv.org/abs/1703.10665
Autor:
Huang, Yuke, Wen, Zhiying
The Tribonacci sequence $\mathbb{T}$ is the fixed point of the substitution $\sigma(a,b,c)=(ab,ac,a)$. In this note, we get the explicit expressions of all squares, and then establish the tree structure of the positions of repeated squares in $\mathb
Externí odkaz:
http://arxiv.org/abs/1605.04505
Autor:
Huang, Yuke, Wen, Zhiying
The Tribonacci sequence $\mathbb{T}$ is the fixed point of the substitution $\sigma(a,b,c)=(ab,ac,a)$. In this note, we give the explicit expressions of the numbers of distinct squares and cubes in $\mathbb{T}[1,n]$ (the prefix of $\mathbb{T}$ of len
Externí odkaz:
http://arxiv.org/abs/1605.04503
Autor:
Huang, Yuke, Wen, Zhiying
The Fibonacci sequence $\mathbb{F}$ is the fixed point beginning with $a$ of morphism $\sigma(a,b)=(ab,a)$. In this paper, we get the explicit expressions of all squares and cubes, then we determine the number of distinct squares and cubes in $\mathb
Externí odkaz:
http://arxiv.org/abs/1603.04211
Autor:
Huang, Yuke, Wen, Zhiying
Let ${\cal P}$ be the set of palindromes occurring in the Fibonacci sequence. In this note, we establish three structures of $\mathcal{P}$ and and discuss their properties: cylinder structure, chain structure and recursive structure. Using these stru
Externí odkaz:
http://arxiv.org/abs/1601.04391
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.