Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Weller, Quinten"'
Autor:
Weller, Quinten
A Laplace transform that maps the topological recursion (TR) wavefunction to its $x$-$y$ swap dual is defined. This transform is then applied to the construction of quantum curves. General results are obtained, including a formula for the quantisatio
Externí odkaz:
http://arxiv.org/abs/2406.17081
Gauging is a powerful operation on symmetries in quantum field theory (QFT), as it connects distinct theories and also reveals hidden structures in a given theory. We initiate a systematic investigation of gauging discrete generalized symmetries in t
Externí odkaz:
http://arxiv.org/abs/2311.17044
Given a spectral curve with exponential singularities (which we call a "transalgebraic spectral curve"), we extend the definition of topological recursion to include contributions from the exponential singularities in a way that is compatible with li
Externí odkaz:
http://arxiv.org/abs/2304.07433
Publikováno v:
In Journal of Geometry and Physics December 2024 206
Autor:
Penin, Alexander A., Weller, Quinten
We elaborate a theory of giant vortices [1] based on an asymptotic expansion in inverse powers of their winding number $n$. The theory is applied to the analysis of vortex solutions in the abelian Higgs (Ginzburg-Landau) model. Specific properties of
Externí odkaz:
http://arxiv.org/abs/2105.12137
Autor:
Penin, Alexander A., Weller, Quinten
Publikováno v:
Phys. Rev. Lett. 125, 251601 (2020)
We discuss vortex solutions of the abelian Higgs model in the limit of large winding number $n$. We suggest a framework where a topological quantum number $n$ is associated with a ratio of dynamical scales and a systematic expansion in inverse powers
Externí odkaz:
http://arxiv.org/abs/2009.06640
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Weller, Quinten
The topological recursion is a construction in algebraic geometry that takes in the data of a so-called spectral curve, $\mathcal{S}=\left(\Sigma,x,y\right)$ where $\Sigma$ is a Riemann surface and $x,y:\Sigma\to\mathbb{C}_\infty$ are meromorphic, an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::196bce6ced825930c8bb126fed640d72