Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Weitz, Benjamin"'
Publikováno v:
In Journal of Pharmaceutical Sciences September 2024
The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree $d$ in $n$ variables contains
Externí odkaz:
http://arxiv.org/abs/1711.11497
Autor:
Raghavendra, Prasad, Weitz, Benjamin
It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if one exists via the Ellipsoid algorithm. In [O17], Ryan O'Donnell notes this widely quoted claim is not necessarily true. He presents an example of a polyn
Externí odkaz:
http://arxiv.org/abs/1702.05139
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce a temporal Steiner network problem in which a graph, as well as changes to its edges and/or vertices over a set of discrete times, are given as input; the goal is to find a minimal subgraph satisfying a set of $k$ time-sensitive connecti
Externí odkaz:
http://arxiv.org/abs/1609.04918
Autor:
Schramm, Tselil, Weitz, Benjamin
We give an algorithm for completing an order-$m$ symmetric low-rank tensor from its multilinear entries in time roughly proportional to the number of tensor entries. We apply our tensor completion algorithm to the problem of learning mixtures of prod
Externí odkaz:
http://arxiv.org/abs/1506.03137
Autor:
Braun, Gábor, Brown-Cohen, Jonah, Huq, Arefin, Pokutta, Sebastian, Raghavendra, Prasad, Roy, Aurko, Weitz, Benjamin, Zink, Daniel
Publikováno v:
Proceedings of SODA 2016, 1067-1078
Yannakakis showed that the matching problem does not have a small symmetric linear program. Rothvo{\ss} recently proved that any, not necessarily symmetric, linear program also has exponential size. It is natural to ask whether the matching problem c
Externí odkaz:
http://arxiv.org/abs/1504.00703
Matrix Completion is the problem of recovering an unknown real-valued low-rank matrix from a subsample of its entries. Important recent results show that the problem can be solved efficiently under the assumption that the unknown matrix is incoherent
Externí odkaz:
http://arxiv.org/abs/1402.2331
Autor:
Weitz, Benjamin
We give constructions of n^k x n^k x n tensors of rank at least 2n^k - O(n^(k-1)). As a corollary we obtain an [n]^r shaped tensor with rank at least 2n^(r/2) - O(n^(r/2)-1) when r is odd. The tensors are constructed from a simple recursive pattern,
Externí odkaz:
http://arxiv.org/abs/1102.0580
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.