Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Weiss, Ariel"'
Autor:
Jarossay, David, Lilienfeldt, David T. -B. G., Saettone, Francesco Maria, Weiss, Ariel, Zehavi, Sa'ar
Given a finite set $S$ of distinct primes, we propose a method to construct polylogarithmic motivic Chabauty-Kim functions for $\mathbb{P}^1 \setminus \{ 0,1,\infty \}$ using resultants. For a prime $p\not\in S$, the vanishing loci of the images of s
Externí odkaz:
http://arxiv.org/abs/2408.07400
Let $(\rho_\lambda\colon G_{\mathbb Q}\to \operatorname{GL}_5(\overline{E}_\lambda))_\lambda$ be a strictly compatible system of Galois representations such that no Hodge--Tate weight has multiplicity $5$. We show that if $\rho_{\lambda_0}$ is irredu
Externí odkaz:
http://arxiv.org/abs/2406.03617
Let $f$ be a genus two cuspidal Siegel modular eigenform. We prove an adelic open image theorem for the compatible system of Galois representations associated to $f$, generalising the results of Ribet and Momose for elliptic modular forms. Using this
Externí odkaz:
http://arxiv.org/abs/2201.09278
Autor:
Shnidman, Ari, Weiss, Ariel
Publikováno v:
Trans. Amer. Math. Soc. Ser. B 10 (2023), 482-506
Fix an elliptic curve $E$ over a number field $F$ and an integer $n$ which is a power of $3$. We study the growth of the Mordell--Weil rank of $E$ after base change to the fields $K_d = F(\sqrt[2n]{d})$. If $E$ admits a $3$-isogeny, then we show that
Externí odkaz:
http://arxiv.org/abs/2112.12864
Autor:
Ophir, Amit, Weiss, Ariel
Publikováno v:
Res Math Sci 11, 9 (2024)
Let $\rho\colon G\to \mathrm{GL}_2(K)$ be a continuous representation of a compact group $G$ over a complete discretely valued field $K$, with ring of integers $\mathcal O$ and uniformiser $\pi$. We prove that $\operatorname{tr}\rho$ is reducible mod
Externí odkaz:
http://arxiv.org/abs/2111.01559
Autor:
Shnidman, Ari, Weiss, Ariel
Let $A$ be an abelian variety over a number field $F$, and suppose that $\mathbb Z[\zeta_n]$ embeds in $\mathrm{End}_{\bar F} A$, for some root of unity $\zeta_n$ of order $n = 3^m$. Assuming that the Galois action on the finite group $A[1-\zeta_n]$
Externí odkaz:
http://arxiv.org/abs/2107.06803
Autor:
Shnidman, Ari, Weiss, Ariel
Publikováno v:
Forum of Mathematics, Sigma, Volume 10, 2022, e98
For each prime $p$, we show that there exist geometrically simple abelian varieties $A/\mathbb Q$ with non-trivial $p$-torsion in their Tate-Shafarevich groups. Specifically, for any prime $N\equiv 1 \pmod{p}$, let $A_f$ be an optimal quotient of $J_
Externí odkaz:
http://arxiv.org/abs/2106.14096
Autor:
Berger, Tobias, Weiss, Ariel
Let $F$ be a CM field with totally real subfield $F^+$ and let $\pi$ be a $C$-algebraic cuspidal automorphic automorphic representation of $\mathrm{U}(a,b)(\mathbf{A}_{F^+})$ whose archimedean components lie in the (non-degenerate limit of) discrete
Externí odkaz:
http://arxiv.org/abs/2009.13980
Autor:
Weiss, Ariel
Publikováno v:
J. London Math. Soc.(2) 2022
Let $\pi$ be a cuspidal automorphic representation of $\mathrm{GSp}_4(\mathbf{A_Q})$, whose archimedean component is a holomorphic discrete series or limit of discrete series representation. If $\pi$ is not CAP or endoscopic, then we show that its as
Externí odkaz:
http://arxiv.org/abs/1802.08537
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.