Zobrazeno 1 - 10
of 203
pro vyhledávání: '"Weis, Jan"'
Autor:
Weis, Jan1 (AUTHOR) jan.weis@radiol.uu.se, Babos, Magor2 (AUTHOR), Estrada, Sergio3 (AUTHOR), Selvaraju, Ram Kumar3 (AUTHOR)
Publikováno v:
Scientific Reports. 9/24/2024, Vol. 14 Issue 1, p1-12. 12p.
Autor:
Weis, Jan
This theoretical master’s dissertation explores the cleavage between how audiences and journalists perceive transparency and objectivity through the following research questions: “Can transparency be understood independently of objectivity, or ca
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-45795
Autor:
Hug, Daniel, Weis, Jan A.
The Minkowski tensors are the natural tensor-valued generalizations of the intrinsic volumes of convex bodies. We prove two complete sets of integral geometric formulae, so called kinematic and Crofton formulae, for these Minkowski tensors. These for
Externí odkaz:
http://arxiv.org/abs/1712.09699
Autor:
Hug, Daniel, Weis, Jan A.
The tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. On convex polytopes, there exist further generalizations some of which also have continuous extensions to arbitrary convex bodies. In a pre
Externí odkaz:
http://arxiv.org/abs/1612.08847
Autor:
Hug, Daniel, Weis, Jan A.
Tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. We prove a complete set of kinematic formulae for such tensorial curvature measures on convex bodies and for their (nonsmooth) generalizations
Externí odkaz:
http://arxiv.org/abs/1612.08427
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Persson, Jonas, Wall, Anders, Weis, Jan, Gingnell, Malin, Antoni, Gunnar, Lubberink, Mark, Bodén, Robert
Publikováno v:
In Psychiatry Research: Neuroimaging 30 September 2021 315
Autor:
Hug, Daniel, Weis, Jan A.
The tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. We prove a set of Crofton formulae for such tensorial curvature measures. These formulae express the integral mean of the tensorial curvatu
Externí odkaz:
http://arxiv.org/abs/1606.05131
Autor:
Rosestedt, Maria, Velikyan, Irina, Rosenström, Ulrika, Estrada, Sergio, Åberg, Ola, Weis, Jan, Westerlund, Christer, Ingvast, Sofie, Korsgren, Olle, Nordeman, Patrik, Eriksson, Olof
Publikováno v:
In Nuclear Medicine and Biology February 2021 93:54-62
Autor:
Eriksson, Jonas, Roy, Tamal, Sawadjoon, Supaporn, Bachmann, Kim, Sköld, Christian, Larhed, Mats, Weis, Jan, Selvaraju, Ram Kumar, Korsgren, Olle, Eriksson, Olof, Odell, Luke R.
Publikováno v:
In Nuclear Medicine and Biology April 2019 71:1-10