Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Weirun Tao"'
Autor:
Chunlai Mu, Weirun Tao
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 2, Pp 2011-2038 (2023)
We consider the following chemotaxis-growth system with an acceleration assumption, $ \begin{align*} \begin{cases} u_t= \Delta u -\nabla \cdot\left(u \mathbf{w} \right)+\gamma\left({u-u^\alpha}\right), & x\in\Omega,\ t>0,\\ v_t=\Delta v- v+u, & x\
Externí odkaz:
https://doaj.org/article/ad10523cd2ec4be5a930c95546b218fa
Global dynamics and spatiotemporal heterogeneity of a preytaxis model with prey-induced acceleration
Publikováno v:
European Journal of Applied Mathematics, Pp 1-33
Conventional preytaxis systems assume that prey-tactic velocity is proportional to the prey density gradient. However, many experiments exploring the predator–prey interactions show that it is the predator’s acceleration instead of velocity that
Externí odkaz:
https://doaj.org/article/2d065bda758941518906138850fd3f5d
Publikováno v:
Journal of Differential Equations. 354:90-132
Autor:
Weirun Tao null, Zhi-An Wang
Publikováno v:
Communications in Mathematical Analysis and Applications. 1:319-344
Autor:
Chunlai Mu, Weirun Tao
Publikováno v:
Mathematical Biosciences and Engineering. 20:2011-2038
We consider the following chemotaxis-growth system with an acceleration assumption, \begin{document}$ \begin{align*} \begin{cases} u_t= \Delta u -\nabla \cdot\left(u \mathbf{w} \right)+\gamma\left({u-u^\alpha}\right), & x\in\Omega,\ t>0,\\ v_t=\Delta
Autor:
Weirun Tao, Yuxiang Li
Publikováno v:
Nonlinear Analysis: Real World Applications. 45:26-52
This paper investigates an incompressible chemotaxis-Navier–Stokes system with slow p -Laplacian diffusion n t + u ⋅ ∇ n = ∇ ⋅ ( | ∇ n | p − 2 ∇ n ) − ∇ ⋅ ( n χ ( c ) ∇ c ) , x ∈ Ω , t > 0 , c t + u ⋅ ∇ c = Δ c − n
Autor:
Weirun Tao
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 71
In this paper, a chemotaxis model with bounded chemotactic sensitivity and signal absorption is considered under homogeneous Neumann boundary conditions in the ball $$\Omega =B_R(0)\subset {\mathbb {R}}^n$$, where $$R>0$$ and $$n\ge 2$$. Here, S is a
Publikováno v:
Nonlinear Analysis: Real World Applications. 40:55-63
In this note we investigate the evolution behaviour of the solutions to a nonlocal parabolic equation with conserved spatial integral. For the non-global solutions, the blow-up rate for L p norm of the solutions is estimated from below. For several c