Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Weiqiang, Jia"'
Publikováno v:
Humanities & Social Sciences Communications, Vol 11, Iss 1, Pp 1-26 (2024)
Abstract The formal recycling of waste electrical and electronic equipment (WEEE) has long faced collection difficulties owing to the inadequate recycling system and insufficient collection capacity under China’s fund-based recycling model. The gov
Externí odkaz:
https://doaj.org/article/0cbdd5842fee47e1b059a36d521cf5c2
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2024 (2024)
Uncertain events such as earthquakes, epidemics, and wars have increased the risk of supply chain disruption. Due to the needs of carbon reduction policies and environmental protection, a large number of enterprises have started to produce both tradi
Externí odkaz:
https://doaj.org/article/4b3394d2a2af4069a6de71f3dac69791
Autor:
Wenjin Chen, Weiqiang Jia, Cuiying Wu, Lihua Chen, Kai Sun, Ji Wang, Boyun Ding, Ning Liu, Ruxiang Xu
Publikováno v:
Frontiers in Oncology, Vol 11 (2021)
BackgroundP7C3 is a neurogenic compound that exhibits neuroprotective properties in neural cells. However, its target proteins and effects in glioma are unknown.MethodsThe candidate P7C3 target proteins were analyzed using a human protein microarray
Externí odkaz:
https://doaj.org/article/d09ac0ff025c4ce887d3f7f2f9160b7f
Publikováno v:
Cellular and Molecular Biology. 68:129-132
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Transactions on Industrial Informatics. 18:1583-1593
The class imbalance problem has a huge impact on the performance of diagnostic models. When it occurs, the minority samples are easily ignored by classification models. Besides, the distribution of class imbalanced data differs from the actual data d
Publikováno v:
IEEE Transactions on Industrial Informatics. 18:1018-1027
Quality prediction, as the basis of quality control, is dedicated to predicting quality indices of the manufacturing process. In recent years, data-driven deep learning methods have received a lot of attention due to their accuracy, robustness, and c
Publikováno v:
IEEE Transactions on Industrial Informatics. :1-12
Publikováno v:
Chinese Chemical Letters. 34:107746
Publikováno v:
IEEE Transactions on Industrial Informatics. 17:1197-1207
Deep learning plays an increasingly important role in industrial applications, such as the remaining useful life (RUL) prediction of machines. However, when dealing with multifeature data, most deep learning approaches do not have effective mechanism